Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum sensor tracked in human cells could aid drug discovery

Abstract:
Groundbreaking research has shown a quantum atom has been tracked inside a living human cell and may lead to improvements in the testing and development of new drugs.

Quantum sensor tracked in human cells could aid drug discovery

Melbourne, Australia | Posted on May 26th, 2011

Professor Lloyd Hollenberg from the University of Melbourne's School of Physics who led the research said it is the first time a single atom encased in nanodiamond has been used as a sensor to explore the nanoscale environment inside a living human cell.

"It is exciting to see how the atom experiences the biological environment at the nanoscale," he said.

"This research paves the way towards a new class of quantum sensors used for biological research into the development of new drugs and nanomedicine."

The sensor is capable of detecting biological processes at a molecular level, such as the regulation of chemicals in and out of the cell, which is critical in understanding how drugs work.

The paper has been published in the journal Nature Nanotechnology.

Funded by the ARC Centre of Excellence for Quantum Computation and Communication Technology, the research was conducted by a cross-disciplinary team from the University of Melbourne's Physics, Chemistry, and Chemical and Biomolecular Engineering departments.

The researchers developed state of the art technology to control and manipulate the atom in the nanodiamond before inserting it into the human cells in the lab.

Biologist Dr Yan Yan of the University's Department of Chemical and Biomolecular Engineering who works in the field of nanomedicine, said the sensor provides critical information about the movement of the nanodiamonds inside the living cell.

"This is important for the new field of nanomedicine where drug delivery is dependant on the uptake of similar sized nanoparticles into the cell."

Quantum physicist and PhD student Liam McGuinness from the University's School of Physics said that monitoring the atomic sensor in a living cell was a significant achievement. "Previously, these atomic level quantum measurements could only be achieved under carefully controlled conditions of a physics lab," he said.

It is hoped in the next few years, that following these proof of principle experiments, the researchers will be able to develop the technology and provide a new set of tools for drug discovery and nanomedicine.

####

About University of Melbourne
Established in 1853, the University of Melbourne is a public-spirited institution that makes distinctive contributions to society in research, teaching and engagement.

Melbourne's teaching excellence has been rewarded two years in a row by grants from the Commonwealth Government's Learning and Teaching Performance Fund for Australian universities that demonstrate excellence in undergraduate teaching and learning.

Melbourne was also one of only three Australian universities to win ten citations-the maximum number of awards possible-under the Carrick Citations for Outstanding Contributions to Student Learning. The citations recognise commitment by university staff who have shown outstanding leadership and innovation in teaching, and dedication and enthusiasm for student learning.

For more information, please click here

Contacts:
Rebecca Scott
University of Melbourne
Mobile: 0417164791

Copyright © University of Melbourne

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Nanomedicine

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Sensors

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Discoveries

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Quantum nanoscience

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

UAB researchers design the most precise quantum thermometer to date: The device would be capable of measuring the temperature of a cell's interior June 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project