Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Sydney physicist achieves measurement milestone

Dr Michael Biercuk
Dr Michael Biercuk

Research into the most sensitive measurement of force yet recorded has earned University of Sydney physicist Dr Michael Biercuk, of the School of Physics' Quantum Science Group, the National Measurement Institute Prize for excellence in measurement techniques by a scientist under 35.

Sydney physicist achieves measurement milestone

Sydney, Australia | Posted on May 24th, 2011

In collaboration with the Ion Storage Group at the US National Institute of Standards and Technology, Dr Biercuk demonstrated it is possible to use trapped atomic ions as extremely sensitive detectors of applied forces and electromagnetic fields. In so doing, the researchers were able to measure forces with extraordinary sensitivity - down to the yoctonewton (yN) level.

The yoctonewton represents one septillionth of a newton, the unit of force named after physicist Sir Isaac Newton.

"This award recognises Dr Biercuk's contribution to research in the most sensitive measurement of force to date - the yoctonewton," said Innovation Minister Senator Kim Carr, who announced the award on Friday.

"This is an incredibly small force - about a million million billion times smaller than the force exerted by a feather lying on a table. And the measurement is a thousand times more sensitive than anything previously possible," he said.

The discovery provides an opportunity to address new challenges in materials science, nanotechnology and industrial sensing. For example, forces at the yoctoscale correspond to the weight of tiny nanoparticles consisting of just a few dozen atoms, or the effects of tiny electric fields on charges in nanoscale materials.

"By characterising the detector's sensitivity, a term with technical importance, rather than just the minimum force we could detect, we touched on an important area for industrial applications - the speed with which a measurement can be performed," said Dr Biercuk.

"Even if it isn't necessary to measure force at such a tiny level as the yoctoscale, our technique could simply be used to speed up the detection of larger forces. Compared to previous record-setting techniques, our measurement scheme would allow measurement of the same force about one million times faster.

"This ability to measure tiny forces at a dramatically enhanced measurement speed is a key demonstration that may spark new interest in ion-based sensors for applications such as the characterisation of nanomaterials and standoff detection for the mining and defence industries."

To detect the force, Dr Biercuk and colleagues used a device consisting of about 60 beryllium ions confined in a Penning Trap, which stores charged particles using electric and magnetic fields. Any movement caused by an applied force was measured with a laser. The resulting measurement of forces with sensitivity at the level of 390 yoctonewtons with just one second of measurement eclipsed the previous record by three orders of magnitude.

"I am extremely grateful and humbled that this work was deemed significant enough to warrant this distinction, and I'm very pleased that the exciting new field of quantum science is having impacts on a variety of disciplines, including measurement science," said Dr Biercuk.

"I'm looking forward to new capabilities in measurement science emerging from collaborations abroad and with my colleagues in the School of Physics and the Centre for Engineered Quantum Systems."


For more information, please click here

Katie Szittner
61 2 9351 2261

Copyright © University of Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Research partnerships

New EU project designed to link diagnosis and treatment of diseases over the long term: Joint research project aims at the improvement of companion diagnostics and therapy of tumor diseases November 23rd, 2015

Nanocarriers may carry new hope for brain cancer therapy: Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier November 22nd, 2015

Details from the inner life of a tooth: New X-ray method uses scattering to visualize nanostructures November 21st, 2015

The route to high temperature superconductivity goes through the flat land: The route to high temperature superconductivity goes through the flat land November 21st, 2015

Quantum nanoscience

Using light-force to study single molecules November 23rd, 2015

Strange quantum phenomenon achieved at room temperature in semiconductor wafers November 21st, 2015

Stacking instead of mixing: Jülich-Aachen research team improves the energy efficiency of topological insulators November 21st, 2015

Electron partitioning process in graphene observed, a world first: Toward the realization of electron interferometer devices which utilize the wave nature of electrons November 19th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic