Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Sydney physicist achieves measurement milestone

Dr Michael Biercuk
Dr Michael Biercuk

Research into the most sensitive measurement of force yet recorded has earned University of Sydney physicist Dr Michael Biercuk, of the School of Physics' Quantum Science Group, the National Measurement Institute Prize for excellence in measurement techniques by a scientist under 35.

Sydney physicist achieves measurement milestone

Sydney, Australia | Posted on May 24th, 2011

In collaboration with the Ion Storage Group at the US National Institute of Standards and Technology, Dr Biercuk demonstrated it is possible to use trapped atomic ions as extremely sensitive detectors of applied forces and electromagnetic fields. In so doing, the researchers were able to measure forces with extraordinary sensitivity - down to the yoctonewton (yN) level.

The yoctonewton represents one septillionth of a newton, the unit of force named after physicist Sir Isaac Newton.

"This award recognises Dr Biercuk's contribution to research in the most sensitive measurement of force to date - the yoctonewton," said Innovation Minister Senator Kim Carr, who announced the award on Friday.

"This is an incredibly small force - about a million million billion times smaller than the force exerted by a feather lying on a table. And the measurement is a thousand times more sensitive than anything previously possible," he said.

The discovery provides an opportunity to address new challenges in materials science, nanotechnology and industrial sensing. For example, forces at the yoctoscale correspond to the weight of tiny nanoparticles consisting of just a few dozen atoms, or the effects of tiny electric fields on charges in nanoscale materials.

"By characterising the detector's sensitivity, a term with technical importance, rather than just the minimum force we could detect, we touched on an important area for industrial applications - the speed with which a measurement can be performed," said Dr Biercuk.

"Even if it isn't necessary to measure force at such a tiny level as the yoctoscale, our technique could simply be used to speed up the detection of larger forces. Compared to previous record-setting techniques, our measurement scheme would allow measurement of the same force about one million times faster.

"This ability to measure tiny forces at a dramatically enhanced measurement speed is a key demonstration that may spark new interest in ion-based sensors for applications such as the characterisation of nanomaterials and standoff detection for the mining and defence industries."

To detect the force, Dr Biercuk and colleagues used a device consisting of about 60 beryllium ions confined in a Penning Trap, which stores charged particles using electric and magnetic fields. Any movement caused by an applied force was measured with a laser. The resulting measurement of forces with sensitivity at the level of 390 yoctonewtons with just one second of measurement eclipsed the previous record by three orders of magnitude.

"I am extremely grateful and humbled that this work was deemed significant enough to warrant this distinction, and I'm very pleased that the exciting new field of quantum science is having impacts on a variety of disciplines, including measurement science," said Dr Biercuk.

"I'm looking forward to new capabilities in measurement science emerging from collaborations abroad and with my colleagues in the School of Physics and the Centre for Engineered Quantum Systems."


For more information, please click here

Katie Szittner
61 2 9351 2261

Copyright © University of Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Research partnerships

Performance of Polymeric Nanoparticles as Gene Carriers Studied by Iranian, Dutch Scientists October 9th, 2015

Room temperature magnetic skyrmions, a new type of digital memory? October 8th, 2015

A quantum simulator of impossible physics: In the experiment, developed by the UPV/EHU-University of the Basque Country in conjunction with the University of Tsinghua (China), the atoms simulate absurd actions "as if they were actors in a quantum theatre" October 8th, 2015

Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons October 7th, 2015

Quantum nanoscience

A quantum simulator of impossible physics: In the experiment, developed by the UPV/EHU-University of the Basque Country in conjunction with the University of Tsinghua (China), the atoms simulate absurd actions "as if they were actors in a quantum theatre" October 8th, 2015

Purdue launching new quantum center during workshop October 8th, 2015

Observing the unobservable: Researchers measure electron orbitals of molecules in 3-D October 6th, 2015

Laser-wielding physicists seize control of atoms' behavior October 5th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic