Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Scientists uncover chemical transformations in cobalt nanoparticles

Provided/Robinson lab
The evolution schematics of transition from cobalt to cobalt phosphide nanocrystals.
Provided/Robinson lab
The evolution schematics of transition from cobalt to cobalt phosphide nanocrystals.

Abstract:
Understanding the intricacies of how nanoparticles undergo chemical transformations could lead to better ways to tailor their composition, which can lead to advanced material properties.

Scientists uncover chemical transformations in cobalt nanoparticles

Ithaca, NY | Posted on May 24th, 2011

Using the Cornell High Energy Synchrotron Source, scientists led by Richard Robinson, assistant professor of materials science and engineering, uncovered exactly what happens when cobalt nanoparticles transform into two phases of cobalt phosphides.

Their work, published in the Journal of Materials Chemistry, was featured by the journal as a "Hot Article" earlier this month.

The effect Robinson's team observed in the cobalt phosphide transitions was a nanoparticle hollowing due to asymmetric diffusivities of cations and anions. In other words, the cations move out from the core faster than anions can diffuse in, leading to a hollow particle.

Other groups have reported on this "Kirkendall" effect, but the Robinson team was the first to show that this hollowing is more complex than previously thought and can be studied as a two-step process. Their work could be used to control this process and produce complex particles with properties tailored for use in energy applications. Metal phosphides have a wide range of properties -- ferromagnetism, superconductivity, catalytic activity and magnetoresistance among them.

The work was done in collaboration with scientists led by Richard Hennig, assistant professor of materials science and engineering. It was supported by King Abdullah University of Science and Technology, the Cornell Center for Materials Research and the Energy Materials Center at Cornell.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Chemistry

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

McMaster researchers achieve a first by coaxing molecules into assembling themselves: Major advance creates the potential for useful new materials April 21st, 2016

Discoveries

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Research partnerships

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic