Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanoparticles help scientists harvest light with solar fuels

Abstract:
The humble alga, hated by boaters and pool owners, may someday help provide us with the raw machinery to power our appliances.

Nanoparticles help scientists harvest light with solar fuels

Argonne, IL | Posted on May 19th, 2011

A group of scientists at the U.S. Department of Energy's Argonne National Laboratory, led by chemist Lisa Utschig, has linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen instead. The system produces hydrogen at a rate five times greater than the previous record-setting method.

"If you are considering the question 'How do we get energy from the sun,' you always come back to photosynthesis," Utschig said. "Photosynthesis does it best. It's been engineered over millions of years."

Utschig and Tiede are part of Argonne's Photosynthesis Group, which has worked for fifty years to understand photosynthesis—one of the most mysterious and wonderful chemical processes in the world. Photosynthesis built a green Earth out of the bare, meteor-blistered planet which had sat empty for a billion years; it tipped the composition of the atmosphere towards oxygen, allowing all kinds of life to blossom, including us.

The chemistry group is part of a larger effort to develop efficient ways to produce what are termed solar fuels. Most people think of solar panels when they think of solar energy, but the energy that solar panels generate has to be used right away—they directly create electricity, which can't be stored easily.

The alternative is solar fuels, which pull energy from the sun to create fuel that can be stored for later, such as hydrogen. Hydrogen, a promising fuel in the effort to reduce carbon dioxide emissions, is appealingly clean: when it's burned as fuel, water is the byproduct. But we have yet to discover a low-cost way to manufacture large amounts of hydrogen.

"Basically, we've been reverse-engineering photosynthesis," said Argonne chemist David Tiede, who co-authored the paper. "If we understand how Nature does it, we can tweak the process to produce hydrogen."

Most solar fuel efforts focus on a type of protein complex called Photosystem I, or PSI, which is the first half of the photosynthetic duo found in all green plants.

When light strikes the PSI complex, it momentarily knocks an electron into an "excited" state. The goal is to separate this electron from its home atom—leaving behind a "hole" of positive charge—and channel it to an artificial catalyst to make hydrogen. But the electron only remains excited for the tiniest fraction of a second; the catalyst needs to grab it during this tiny window.

With co-author Nada Dimitrijevic, the team designed platinum nanoparticle catalysts. These catalysts have a size and surface chemistry that allows them to stick to PSI molecules at the point where the light-generated electrons accumulate. When the modified platinum nanoparticles and PSI are mixed in water, the two link together.

"The platinum nanoparticles have the same size and surface charge as the molecule that PSI would bind to naturally," Tiede said.

Because the study design used platinum as a catalyst, which is too expensive to be cost-effective, the research serves as proof-of-concept. Further studies hope to improve the method's efficiency, reliability and economics.

"The next step we'll take is experimenting with non-platinum catalysts," Utschig said. "Hopefully we can find a catalyst that can be made with a cheaper metal, which would make the process much more attractive on a large scale."

The paper, "Photocatalytic Hydrogen Production from Noncovalent Biohybrid Photosystem I/Pt Nanoparticle Complexes," was published in the Journal of Physical Chemistry Letters and is available online.

The research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy's Office of Basic Energy Sciences.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Louise Lerner
630/252-5526

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Laboratories

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Discoveries

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Announcements

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Energy

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Nanobiotechnology

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE