Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles help scientists harvest light with solar fuels

Abstract:
The humble alga, hated by boaters and pool owners, may someday help provide us with the raw machinery to power our appliances.

Nanoparticles help scientists harvest light with solar fuels

Argonne, IL | Posted on May 19th, 2011

A group of scientists at the U.S. Department of Energy's Argonne National Laboratory, led by chemist Lisa Utschig, has linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen instead. The system produces hydrogen at a rate five times greater than the previous record-setting method.

"If you are considering the question 'How do we get energy from the sun,' you always come back to photosynthesis," Utschig said. "Photosynthesis does it best. It's been engineered over millions of years."

Utschig and Tiede are part of Argonne's Photosynthesis Group, which has worked for fifty years to understand photosynthesis—one of the most mysterious and wonderful chemical processes in the world. Photosynthesis built a green Earth out of the bare, meteor-blistered planet which had sat empty for a billion years; it tipped the composition of the atmosphere towards oxygen, allowing all kinds of life to blossom, including us.

The chemistry group is part of a larger effort to develop efficient ways to produce what are termed solar fuels. Most people think of solar panels when they think of solar energy, but the energy that solar panels generate has to be used right away—they directly create electricity, which can't be stored easily.

The alternative is solar fuels, which pull energy from the sun to create fuel that can be stored for later, such as hydrogen. Hydrogen, a promising fuel in the effort to reduce carbon dioxide emissions, is appealingly clean: when it's burned as fuel, water is the byproduct. But we have yet to discover a low-cost way to manufacture large amounts of hydrogen.

"Basically, we've been reverse-engineering photosynthesis," said Argonne chemist David Tiede, who co-authored the paper. "If we understand how Nature does it, we can tweak the process to produce hydrogen."

Most solar fuel efforts focus on a type of protein complex called Photosystem I, or PSI, which is the first half of the photosynthetic duo found in all green plants.

When light strikes the PSI complex, it momentarily knocks an electron into an "excited" state. The goal is to separate this electron from its home atom—leaving behind a "hole" of positive charge—and channel it to an artificial catalyst to make hydrogen. But the electron only remains excited for the tiniest fraction of a second; the catalyst needs to grab it during this tiny window.

With co-author Nada Dimitrijevic, the team designed platinum nanoparticle catalysts. These catalysts have a size and surface chemistry that allows them to stick to PSI molecules at the point where the light-generated electrons accumulate. When the modified platinum nanoparticles and PSI are mixed in water, the two link together.

"The platinum nanoparticles have the same size and surface charge as the molecule that PSI would bind to naturally," Tiede said.

Because the study design used platinum as a catalyst, which is too expensive to be cost-effective, the research serves as proof-of-concept. Further studies hope to improve the method's efficiency, reliability and economics.

"The next step we'll take is experimenting with non-platinum catalysts," Utschig said. "Hopefully we can find a catalyst that can be made with a cheaper metal, which would make the process much more attractive on a large scale."

The paper, "Photocatalytic Hydrogen Production from Noncovalent Biohybrid Photosystem I/Pt Nanoparticle Complexes," was published in the Journal of Physical Chemistry Letters and is available online.

The research was supported by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy's Office of Basic Energy Sciences.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Louise Lerner
630/252-5526

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Laboratories

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Discoveries

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Announcements

International research partnership tricks the light fantastic March 2nd, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Energy

UC research partnership explores how to best harness solar power March 2nd, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Nanobiotechnology

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Bacteria network for food: Bacteria connect to each other and exchange nutrients February 23rd, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Better batteries inspired by lowly snail shells: Biological molecules can latch onto nanoscale components and lock them into position to make high performing Li-ion battery electrodes, according to new research presented at the 59th annual meeting of the Biophysical Society February 12th, 2015

Solar/Photovoltaic

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE