Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nano-tuned Solar Cells

Abstract:
Solar cells that are more effective and cost less in production: Within the EU-project N2P (Nano to Product) researchers developed nano tuned surfaces to gain both.

Nano-tuned Solar Cells

Italy | Posted on May 18th, 2011

The sun has enough power to supply the whole earth with energy. But as long as renewable energy is more expensive than energy produced by coal or nuclear plants, solar energy won't be first choice. In Europe photovoltaic cells make only a vanishing small share of renewable energy sources.

Researchers in UK, Switzerland and Germany aim to lower the costs and increase the efficiency. The N2P project is coordinated by the Fraunhofer Institute for Material and Beam Technology in Dresden, Germany. Here researchers developed a process to enhance the absorption qualities of solar cells for an invisible yet important part of sunlight, infrared light. Conventional solar cells hardly make use of this wavelength. Most of it passes through the cell and is lost. By removing the nano structured surface of the wafer on the rear side of the solar cell, using a chemical etching process, it is turns into a "mirror" that reflects the infrared rays back into the cell.

As the light rays are scattered by the glass, they have a longer pathway through the silicon cell and thus generate more electrical current. So far the researchers were able to increase the efficiency by 30 percent if compared to the efficiency of standard thin film solar cells.

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Neuchâtel, Switzerland, are working on thin film solar cells. Thin film solar cells have on the one hand a lot of advantages: Producing them consumes less raw materials and energy than producing common solar cells. Additionally the time they need to pay off is shorter. On the other hand there is a drawback: currently their efficiency is about 40 percent lower than in conventional solar cells. Only seven percent of the sunlight can be exploited.

To maximize the light trapping effect they do the opposite: they roughen the glass surface of thin film solar cells. This is done to diffuse the light. When the light beam has a longer way through the cell it generates more electrons.

To roughen the upper surface Dr. Sylvain Nicolay from EPFL deposits a layer of crystals of a so called transparent conductive oxide onto the glass. "The larger the nano sized pyramids are, the higher is the diffusion", he says. The efficiency of thin film solar cells is now improved from seven to ten percent.

The nano crystals Dr Nicolay uses were developed at the University of Salford in Manchester, UK. Until recently the nano crystals had to be imported from Japan and made the production of such solar cells very expensive. Now the scientists are testing the crystals they developed on their own. The aim is to produce them much cheaper and thus reduce the costs significantly.

Each single method of improving the solar cells can only make a small difference on their efficiency. But combining both, these nano-tuned solar cells will become considerably more competitive than the modules of the past.

Corinna Luecke - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +390272002572
Fax: +390272002540
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

video available at:

Related News Press

News and information

New pathway to valleytronics January 27th, 2015

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Videos/Movies

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Announcements

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Energy

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

Alliances/Partnerships/Distributorships

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Research partnerships

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

Wearable sensor clears path to long-term EKG, EMG monitoring January 20th, 2015

Graphene enables all-electrical control of energy flow from light emitters: First signatures of graphene plasmons at telecommunications wavelength revealed January 20th, 2015

Solar/Photovoltaic

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

New technique helps probe performance of organic solar cell materials January 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE