Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Nano-tuned Solar Cells

Solar cells that are more effective and cost less in production: Within the EU-project N2P (Nano to Product) researchers developed nano tuned surfaces to gain both.

Nano-tuned Solar Cells

Italy | Posted on May 18th, 2011

The sun has enough power to supply the whole earth with energy. But as long as renewable energy is more expensive than energy produced by coal or nuclear plants, solar energy won't be first choice. In Europe photovoltaic cells make only a vanishing small share of renewable energy sources.

Researchers in UK, Switzerland and Germany aim to lower the costs and increase the efficiency. The N2P project is coordinated by the Fraunhofer Institute for Material and Beam Technology in Dresden, Germany. Here researchers developed a process to enhance the absorption qualities of solar cells for an invisible yet important part of sunlight, infrared light. Conventional solar cells hardly make use of this wavelength. Most of it passes through the cell and is lost. By removing the nano structured surface of the wafer on the rear side of the solar cell, using a chemical etching process, it is turns into a "mirror" that reflects the infrared rays back into the cell.

As the light rays are scattered by the glass, they have a longer pathway through the silicon cell and thus generate more electrical current. So far the researchers were able to increase the efficiency by 30 percent if compared to the efficiency of standard thin film solar cells.

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Neuchâtel, Switzerland, are working on thin film solar cells. Thin film solar cells have on the one hand a lot of advantages: Producing them consumes less raw materials and energy than producing common solar cells. Additionally the time they need to pay off is shorter. On the other hand there is a drawback: currently their efficiency is about 40 percent lower than in conventional solar cells. Only seven percent of the sunlight can be exploited.

To maximize the light trapping effect they do the opposite: they roughen the glass surface of thin film solar cells. This is done to diffuse the light. When the light beam has a longer way through the cell it generates more electrons.

To roughen the upper surface Dr. Sylvain Nicolay from EPFL deposits a layer of crystals of a so called transparent conductive oxide onto the glass. "The larger the nano sized pyramids are, the higher is the diffusion", he says. The efficiency of thin film solar cells is now improved from seven to ten percent.

The nano crystals Dr Nicolay uses were developed at the University of Salford in Manchester, UK. Until recently the nano crystals had to be imported from Japan and made the production of such solar cells very expensive. Now the scientists are testing the crystals they developed on their own. The aim is to produce them much cheaper and thus reduce the costs significantly.

Each single method of improving the solar cells can only make a small difference on their efficiency. But combining both, these nano-tuned solar cells will become considerably more competitive than the modules of the past.

Corinna Luecke -


For more information, please click here

Elisabeth Schmid
Phone: +390272002572
Fax: +390272002540

Copyright ©

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

video available at:

Related News Press

News and information

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014


Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Nanoparticles get a magnetic handle: New method produces particles that can glow with color-coded light and be manipulated with magnets October 9th, 2014

NIST quantum probe enhances electric field measurements October 8th, 2014


NanoTechnology for Defense (NT4D) October 22nd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

TARA Biosystems and Harris & Harris Group Form Company to Improve Safety and Efficacy of New Therapies October 22nd, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014


Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014


European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

VDMA photonics steering committee with new members stronger than ever October 14th, 2014

Research partnerships

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014


Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Over 100 European experts meet in Barcelona thanks to a COST Action coordinated from ICN2: The ISOS-7 Summit discusses the future of organic photovoltaic devices October 7th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE