Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-tuned Solar Cells

Abstract:
Solar cells that are more effective and cost less in production: Within the EU-project N2P (Nano to Product) researchers developed nano tuned surfaces to gain both.

Nano-tuned Solar Cells

Italy | Posted on May 18th, 2011

The sun has enough power to supply the whole earth with energy. But as long as renewable energy is more expensive than energy produced by coal or nuclear plants, solar energy won't be first choice. In Europe photovoltaic cells make only a vanishing small share of renewable energy sources.

Researchers in UK, Switzerland and Germany aim to lower the costs and increase the efficiency. The N2P project is coordinated by the Fraunhofer Institute for Material and Beam Technology in Dresden, Germany. Here researchers developed a process to enhance the absorption qualities of solar cells for an invisible yet important part of sunlight, infrared light. Conventional solar cells hardly make use of this wavelength. Most of it passes through the cell and is lost. By removing the nano structured surface of the wafer on the rear side of the solar cell, using a chemical etching process, it is turns into a "mirror" that reflects the infrared rays back into the cell.

As the light rays are scattered by the glass, they have a longer pathway through the silicon cell and thus generate more electrical current. So far the researchers were able to increase the efficiency by 30 percent if compared to the efficiency of standard thin film solar cells.

Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) in Neuchâtel, Switzerland, are working on thin film solar cells. Thin film solar cells have on the one hand a lot of advantages: Producing them consumes less raw materials and energy than producing common solar cells. Additionally the time they need to pay off is shorter. On the other hand there is a drawback: currently their efficiency is about 40 percent lower than in conventional solar cells. Only seven percent of the sunlight can be exploited.

To maximize the light trapping effect they do the opposite: they roughen the glass surface of thin film solar cells. This is done to diffuse the light. When the light beam has a longer way through the cell it generates more electrons.

To roughen the upper surface Dr. Sylvain Nicolay from EPFL deposits a layer of crystals of a so called transparent conductive oxide onto the glass. "The larger the nano sized pyramids are, the higher is the diffusion", he says. The efficiency of thin film solar cells is now improved from seven to ten percent.

The nano crystals Dr Nicolay uses were developed at the University of Salford in Manchester, UK. Until recently the nano crystals had to be imported from Japan and made the production of such solar cells very expensive. Now the scientists are testing the crystals they developed on their own. The aim is to produce them much cheaper and thus reduce the costs significantly.

Each single method of improving the solar cells can only make a small difference on their efficiency. But combining both, these nano-tuned solar cells will become considerably more competitive than the modules of the past.

Corinna Luecke - youris.com

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: +390272002572
Fax: +390272002540
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

video available at:

Related News Press

News and information

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Videos/Movies

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

New Method Provides Nanoscale Details of Electrochemical Reactions in Electric Vehicle Battery Materials August 4th, 2014

Announcements

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Energy

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Alliances/Partnerships/Distributorships

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Handheld scanner could make brain tumor removal more complete, reducing recurrence September 3rd, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

JPK expands availability of instrumentation in the USA – appointing new distributors – launched a new web site to support the US market - AFM now available to US users August 26th, 2014

Research partnerships

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE