Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Computer Synapse' Analyzed at Nanoscale

Abstract:
Researchers said they have analyzed in unprecedented detail the physical and chemical properties of an electronic device that computer engineers hope will transform computing.

'Computer Synapse' Analyzed at Nanoscale

Tehran, Iran | Posted on May 17th, 2011

Memristors, short for memory resistors, are a newly understood circuit element for the development of electronics and have inspired experts to seek ways of mimicking the behavior of our own brains' activity inside a computer.

The research conducted at Hewlett Packard and the University of California, Santa Barbara, and published in IOP Publishing's Nanotechnology, explains how the researchers have used highly focused x-rays to map out the nanoscale physical and chemical properties of these electronic devices.

It is thought memristors, with the ability to 'remember' the total electronic charge that passes through them, will be of greatest benefit when they can act like synapses within electronic circuits, mimicking the complex network of neurons present in the brain, enabling our own ability to perceive, think and remember.

Mimicking biological synapses -- the junctions between two neurons where information is transmitted in our brains -- could lead to a wide range of novel applications, including semi-autonomous robots, if complex networks of neurons can be reproduced in an artificial system.

In order for the huge potential of memristors to be utilized, researchers first need to understand the physical processes that occur within the memristors at a very small scale.

Memristors have a very simple structure -- often just a thin film made of titanium dioxide between two metal electrodes -- and have been extensively studied in terms of their electrical properties.

For the first time, researchers have been able to non-destructively study the physical properties of memristors allowing for a more detailed insight into the chemistry and structure changes that occur when the device is operating.

The researchers were able to study the exact channel where the resistance switching of memristors occurs by using a combination of techniques.

They used highly focused x-rays to locate and image the approximately one hundred nanometer wide channel where the switching of resistance takes place, which could then be fed into a mathematical model of how the memristor heats up.

John Paul Strachan of the nanoElectronics Research Group, Hewlett-Packard Labs, California, said: "One of the biggest hurdles in using these devices is understanding how they work: the microscopic picture for how they undergo such tremendous and reversible change in resistance.

"We now have a direct picture for the thermal profile that is highly localized around this channel during electrical operation, and is likely to play a large role in accelerating the physics driving the memristive behavior."

This research appears as part of a special issue on non-volatile memory based on nanostructures.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Thin films

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Brain-Computer Interfaces

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Optical magnetic field sensor can detect signals from the nervous system July 19th, 2016

A 'bridge' of carbon between nerve tissues: A high-tech 'sponge' connects neurons in vitro (and is biocompatible in vivo) July 18th, 2016

Scientists move closer to developing therapeutic window to the brain: Transparent skull implant created by UCR-led team will allow doctors to deliver life-saving laser treatments to patients with brain disorders July 13th, 2016

Chip Technology

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Memory Technology

Diamonds and quantum information processing on the nano scale August 31st, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

Discoveries

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Announcements

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic