Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Computer Synapse' Analyzed at Nanoscale

Abstract:
Researchers said they have analyzed in unprecedented detail the physical and chemical properties of an electronic device that computer engineers hope will transform computing.

'Computer Synapse' Analyzed at Nanoscale

Tehran, Iran | Posted on May 17th, 2011

Memristors, short for memory resistors, are a newly understood circuit element for the development of electronics and have inspired experts to seek ways of mimicking the behavior of our own brains' activity inside a computer.

The research conducted at Hewlett Packard and the University of California, Santa Barbara, and published in IOP Publishing's Nanotechnology, explains how the researchers have used highly focused x-rays to map out the nanoscale physical and chemical properties of these electronic devices.

It is thought memristors, with the ability to 'remember' the total electronic charge that passes through them, will be of greatest benefit when they can act like synapses within electronic circuits, mimicking the complex network of neurons present in the brain, enabling our own ability to perceive, think and remember.

Mimicking biological synapses -- the junctions between two neurons where information is transmitted in our brains -- could lead to a wide range of novel applications, including semi-autonomous robots, if complex networks of neurons can be reproduced in an artificial system.

In order for the huge potential of memristors to be utilized, researchers first need to understand the physical processes that occur within the memristors at a very small scale.

Memristors have a very simple structure -- often just a thin film made of titanium dioxide between two metal electrodes -- and have been extensively studied in terms of their electrical properties.

For the first time, researchers have been able to non-destructively study the physical properties of memristors allowing for a more detailed insight into the chemistry and structure changes that occur when the device is operating.

The researchers were able to study the exact channel where the resistance switching of memristors occurs by using a combination of techniques.

They used highly focused x-rays to locate and image the approximately one hundred nanometer wide channel where the switching of resistance takes place, which could then be fed into a mathematical model of how the memristor heats up.

John Paul Strachan of the nanoElectronics Research Group, Hewlett-Packard Labs, California, said: "One of the biggest hurdles in using these devices is understanding how they work: the microscopic picture for how they undergo such tremendous and reversible change in resistance.

"We now have a direct picture for the thermal profile that is highly localized around this channel during electrical operation, and is likely to play a large role in accelerating the physics driving the memristive behavior."

This research appears as part of a special issue on non-volatile memory based on nanostructures.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

Thin films

Los Alamos Develops New Technique for Growing High-Efficiency Perovskite Solar Cells: Researchersí crystal-production insights resolve manufacturing difficulty January 29th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Brain-Computer Interfaces

On the frontiers of cyborg science August 10th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Noninvasive brain control: New light-sensitive protein enables simpler, more powerful optogenetics June 30th, 2014

Stanford scientists create circuit board modeled on the human brain April 28th, 2014

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Discoveries

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE