Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New form of girl's best friend is lighter than ever

A diamond aerogel has been hammered out of a 
microscopic anvil. 
Image by Kwei-Yu Chu/LLNL
A diamond aerogel has been hammered out of a microscopic anvil.
Image by Kwei-Yu Chu/LLNL

Abstract:
By combining high pressure with high temperature, Livermore researchers have created a nanocyrstalline diamond aerogel that could improve the optics something as big as a telescope or as small as the lenses in eyeglasses.

New form of girl's best friend is lighter than ever

Livermore, CA | Posted on May 17th, 2011

Aerogels are a class of materials that exhibit the lowest density, thermal conductivity, refractive index and sound velocity of any bulk solid. Aerogels are among the most versatile materials available for technical applications due to their wide variety of exceptional properties. This material has chemists, physicists, astronomers, and materials scientists utilizing its properties in myriad applications, from a water purifier for desalinizing seawater to installation on a NASA satellite as a meteorite particle collector.

In the new research appearing in the May 9-13 online edition of the Proceedings of the National Academy of Sciences, a Livermore team created a diamond aerogel from a standard carbon-based aerogel precursor using a laser-heated diamond anvil cell.

A diamond anvil cell consists of two opposing diamonds with the sample compressed between them. It can compress a piece of material small (tens of micrometers or smaller) to extreme pressures, which can exceed 3 million atmospheres. The device has been used to recreate the pressure existing deep inside planets, creating materials and phases not observed under normal conditions. Since diamonds are transparent, intense laser light also can be focused onto the sample to simultaneously heat it to thousands of degrees.

The new form of diamond has a very low density probably similar to that of the precursor of around 40 milligrams per cubic centimeter, which is only about 40 times denser than air.

The diamond aerogel could have applications in antireflection coatings, a type of optical coating applied to the surface of lenses and other optical devices to reduce reflection. Less light is lost, improving the efficiency of the system. It can be applied to telescopes, binoculars, eyeglasses or any other device that may require a reflection reduction. It also has potential applications in enhanced or modified biocompatibility, chemical doping, thermal conduction and electrical field emission.

In creating diamond aergoels, lead researcher Peter Pauzauskie, a former Lawrence fellow now at the University of Washington, infused the pores of a standard, carbon-based aerogel with neon, preventing the entire aerogel from collapsing on itself.

At that point, the team subjected the aerogel sample to tremendous pressures and temperatures (above 200,000 atmospheres and in excess of 2,240 degrees Fahrenheit), forcing the carbon atoms within to shift their arrangement and create crystalline diamonds.

The success of this work also leads the team to speculate that additional novel forms of diamond may be obtained by exposing appropriate precursors to the right combination of high pressure and temperature.

Livermore researchers on the project include: Jonathan Crowhurst, Marcus Worsley, Ted Laurence, Yinmin "Morris" Wang, Trevor Wiley, Kenneth Visbeck, William Evans, Joseph Zaug and Joe Satcher Jr.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
Phone: (925) 422-9799 or
(925) 784-3926


Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

News and information

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Aerogels

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Aspen Aerogels to Present at the 28th Annual ROTH Conference March 14th, 2016

The secret to 3-D graphene? Just freeze it: New study shows how researchers tame the notoriously fickle supermaterial in aerogel form with 3-D printer and ice March 6th, 2016

Aspen Aerogels to Present at the Needham Growth Conference January 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Discoveries

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Materials/Metamaterials

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Announcements

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

Photonics/Optics/Lasers

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project