Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Top journal announces highlighted “hot paper” on AFM-IR research by Anasys scientific advisor, Alexandre Dazzi, and co-workers from the Université de Paris-Sud

Schematic representation of AFM-IR as described by Dazzi and his colleagues in Angew. Chemie.
Schematic representation of AFM-IR as described by Dazzi and his colleagues in Angew. Chemie.

Abstract:
Anasys Instruments is pleased to report the publication and highlighting of a "hot paper" from a group of leading French scientists in the leading scientific journal, Angewandte Chemie. The paper address a molecular mapping challenge using the exciting technique of AFM-IR, the combination of an atomic force microscope (AFM) and IR spectroscopy.

Top journal announces highlighted “hot paper” on AFM-IR research by Anasys scientific advisor, Alexandre Dazzi, and co-workers from the Université de Paris-Sud

Santa Barbara, CA | Posted on May 17th, 2011

The mapping of molecules inside cells is a contemporary challenge that requires both high sensitivity and sub-micron resolution. IR-spectroscopy is valuable for chemical imaging. In the case of vibrational excitation in the IR, no photobleaching is induced in contrast to what is observed with organic fluorophores in the visible or UV range. The diffraction limit restricts optical resolution in the IR to over 5 μm. The paper describes how this challenge was overcome using thermal rather than optical detection.

The AFM-IR technique was developed by Dr. Alexandre Dazzi at the University of Paris-Sud. It uses an AFM-tip in contact mode with an object as the IR absorbance detector. This breakthrough technique made it possible for this consortium of chemists, physicists and cell biologists to localize a rhenium-carbonyl complex inside cells after a 1h-incubation at 10 μL. They have also localized the nucleus using its own IR-signature without any trackers and shown that the molecule is localized inside the nucleus.

Dr. Dazzi's research has been at the core of the Anasys nanoIR system. Potential nanoIR application areas include polymer blends, multilayer films and laminates, organic defect analysis, tissue morphology and histology, subcellular spectroscopy, and organic photovoltaics. For further details, please see the application notes at the Anasys website (www.anasysinstruments.com/nano_IR_spectroscopy.php?fi=applications#apn).

Reference: Subcellular Imaging in the mid-IR of a Metal-Carbonyl Moiety using Photothermal Induced Resonance, Clotilde Policar, Jenny-Birgitta Waern, Marie-Aude Plamont, Sylvain Clède, Céline Mayet, Rui Prazeres, Jaan-Michel Ortega, Anne Vessières, Alexandre Dazzi, Angew. Chemie, Int. Ed., 2011, 860.

####

About Anasys Instruments Corporation
Anasys Instruments is dedicated to delivering innovative products and solutions that measure material properties for samples with spatially varying physical and chemical properties at the micro and nanoscale. The Santa Barbara, California-based company has already pioneered two major material property measurement breakthroughs: nanoscale IR Spectroscopy and nanoscale thermal analysis.

For more information, please click here

Contacts:
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara, CA 93101
USA
T +1 (805) 730 3310
F +1 (805) 730 3300
www.anasysinstruments.com


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44 (0) 1799 521881
www.netdyalog.com

Copyright © Anasys Instruments Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project