Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Top journal announces highlighted “hot paper” on AFM-IR research by Anasys scientific advisor, Alexandre Dazzi, and co-workers from the Université de Paris-Sud

Schematic representation of AFM-IR as described by Dazzi and his colleagues in Angew. Chemie.
Schematic representation of AFM-IR as described by Dazzi and his colleagues in Angew. Chemie.

Abstract:
Anasys Instruments is pleased to report the publication and highlighting of a "hot paper" from a group of leading French scientists in the leading scientific journal, Angewandte Chemie. The paper address a molecular mapping challenge using the exciting technique of AFM-IR, the combination of an atomic force microscope (AFM) and IR spectroscopy.

Top journal announces highlighted “hot paper” on AFM-IR research by Anasys scientific advisor, Alexandre Dazzi, and co-workers from the Université de Paris-Sud

Santa Barbara, CA | Posted on May 17th, 2011

The mapping of molecules inside cells is a contemporary challenge that requires both high sensitivity and sub-micron resolution. IR-spectroscopy is valuable for chemical imaging. In the case of vibrational excitation in the IR, no photobleaching is induced in contrast to what is observed with organic fluorophores in the visible or UV range. The diffraction limit restricts optical resolution in the IR to over 5 μm. The paper describes how this challenge was overcome using thermal rather than optical detection.

The AFM-IR technique was developed by Dr. Alexandre Dazzi at the University of Paris-Sud. It uses an AFM-tip in contact mode with an object as the IR absorbance detector. This breakthrough technique made it possible for this consortium of chemists, physicists and cell biologists to localize a rhenium-carbonyl complex inside cells after a 1h-incubation at 10 μL. They have also localized the nucleus using its own IR-signature without any trackers and shown that the molecule is localized inside the nucleus.

Dr. Dazzi's research has been at the core of the Anasys nanoIR system. Potential nanoIR application areas include polymer blends, multilayer films and laminates, organic defect analysis, tissue morphology and histology, subcellular spectroscopy, and organic photovoltaics. For further details, please see the application notes at the Anasys website (www.anasysinstruments.com/nano_IR_spectroscopy.php?fi=applications#apn).

Reference: Subcellular Imaging in the mid-IR of a Metal-Carbonyl Moiety using Photothermal Induced Resonance, Clotilde Policar, Jenny-Birgitta Waern, Marie-Aude Plamont, Sylvain Clède, Céline Mayet, Rui Prazeres, Jaan-Michel Ortega, Anne Vessières, Alexandre Dazzi, Angew. Chemie, Int. Ed., 2011, 860.

####

About Anasys Instruments Corporation
Anasys Instruments is dedicated to delivering innovative products and solutions that measure material properties for samples with spatially varying physical and chemical properties at the micro and nanoscale. The Santa Barbara, California-based company has already pioneered two major material property measurement breakthroughs: nanoscale IR Spectroscopy and nanoscale thermal analysis.

For more information, please click here

Contacts:
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara, CA 93101
USA
T +1 (805) 730 3310
F +1 (805) 730 3300
www.anasysinstruments.com


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44 (0) 1799 521881
www.netdyalog.com

Copyright © Anasys Instruments Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Imaging

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Fundamental observation of spin-controlled electrical conduction in metals: Ultrafast terahertz spectroscopy yields direct insight into the building block of modern magnetic memories July 6th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Tools

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Miniature Technology, Large-Scale Impact: Winner of the 2015 Lindros Award for translational medicine, Kjeld Janssen is pushing the boundaries of the emerging lab-on-a-chip technology - See more at: http://www.news.ucsb.edu/2015/015744/miniature-technology-large-scale-impact#stha July 7th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project