Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Non-toxic nanoparticles may someday be used to fight cancer

Dr. Phuoc Tran’s laser ablation 
process is used to produce 
nanoparticles of gold that can 
be used in treating cancer and 
as targeted drug delivery 
vehicles.
Dr. Phuoc Tran’s laser ablation process is used to produce nanoparticles of gold that can be used in treating cancer and as targeted drug delivery vehicles.

Abstract:
Dr. Phuoc X. Tran's research at DOE's National Energy Technology Laboratory (NETL) has involved laser ignition, fluid dynamics, and heat transfer, all focused on fossil fuel combustion, until relatively recently, when his interest in laser nanoparticle ablation led him into conducting research on fighting cancer. Dr. Tran has developed a method of producing novel, non-toxic gold nanoparticles for cancer treatment to replace the potentially toxic nanoparticles typically produced by current chemical methods. The process involves only water, two lasers, and gold, and uses no toxic chemicals.

Non-toxic nanoparticles may someday be used to fight cancer

Pittsburgh, PA | Posted on May 16th, 2011

When green and infrared lasers strike the surface of a thin gold foil, gold nanoparticles are gouged from the surface in a process called laser ablation. The nanoparticles bunch together in water due to the surface forces, just as nanoparticles produced by standard chemical methods do. The individual nanoparticles must be "unbunched" to be injected into the human body. Standard practice has been to use a toxic surfactant to separate the particles, but Dr. Tran's method uses corn starch, potato starch, or chitosan, a natural product from shellfish.

Dr. Tran is also investigating how natural products could possibly help him control the size and shape of the nanoparticles. The gold particles initially produced by laser ablation are usually spherical, but tiny cylindrical shaped particles, called nanorods, would be preferable. Typically, during clinical treatment, gold nanoparticles are injected into a tumor and then irradiated with infrared light, which can penetrate layers of the patient's skin. The light heats up the gold and causes it to destroy nearby cancerous cells, but only if the nanoparticles are of the right size and shape to absorb the light. Gold nanorods with precisely the right length and diameter interact with infrared light, causing surface electrons to vibrate and heat up to destroy the cancer cells. Research continues to control laser parameters, the concentration of the natural substances, and the temperature and the mixing duration to control the shape and size of the gold nanoparticles.

Meanwhile, Dr. Tran's collaborator at the University of Pittsburgh, Dr. Ann Robertson, is trying to attach pharmaceutically active cells to the gold nanoparticles so that they can be used to deliver different drugs where they are needed most. If the gold nanoparticles were toxic, they might destroy any attached cells, interfere with the attached drugs, or cause new problems in the patient because of the presence of even trace amounts of the toxic compounds. Dr. Tran's non-toxic nanoparticles will avoid these problems—a major advance in this field.

####

About National Energy Technology Laboratory
The National Energy Technology Laboratory (NETL), part of DOE’s national laboratory system, is owned and operated by the U.S. Department of Energy (DOE). NETL supports DOE’s mission to advance the national, economic, and energy security of the United States.

NETL implements a broad spectrum of energy and environmental research and development (R&D) programs that will return benefits for generations to come:

Enabling domestic coal, natural gas, and oil to economically power our Nation’s homes, industries, businesses, and transportation …
While protecting our environment and enhancing our energy independence.
NETL has expertise in coal, natural gas, and oil technologies, contract and project management, analysis of energy systems, and international energy issues.

In addition to research conducted onsite, NETL’s project portfolio includes R&D conducted through partnerships, cooperative research and development agreements, financial assistance, and contractual arrangements with universities and the private sector. Together, these efforts focus a wealth of scientific and engineering talent on creating commercially viable solutions to national energy and environmental problems.

For more information, please click here

Contacts:
626 Cochrans Mill Road
P.O. Box 10940
Pittsburgh, PA 15236-0940
FAX 412-386-4604
412-386-4646

Copyright © National Energy Technology Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

University of Pittsburgh

Related News Press

News and information

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Laboratories

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials February 8th, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Photonics/Optics/Lasers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Research partnerships

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project