Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > APIC Corporation and CNSE Launch $10M Partnership: Collaboration will integrate optics and electronics and result in the creation of 20 high-tech jobs

Abstract:
APIC Corporation, a Los Angeles, CA-based pioneer of photonics technology integrated with electronics, and the College of Nanoscale Science and Engineering (CNSE) of the University at Albany today announced that they have formed a $10 million partnership for joint development and commercialization of innovative "green" technology to enable faster computer chips that use significantly less power.

APIC Corporation and CNSE Launch $10M Partnership: Collaboration will integrate optics and electronics and result in the creation of 20 high-tech jobs

Albany, NY | Posted on May 16th, 2011

The collaboration, which integrates APIC's expertise in photonics systems and devices with CNSE's world-class nanoelectronics resources, will result in creation of at least 20 high-tech jobs over the next 18 months, the majority at CNSE's Albany NanoTech Complex.

The APIC-CNSE partnership targets development and delivery of a new generation of modules and systems that utilize photonic integrated circuits (PIC), which combine optical communications with silicon-based CMOS technologies. As ongoing scaling continues to shrink the bandwidth of metal wiring used to connect CMOS circuits, severely limiting speed and functionality for advanced processors and multi-core systems, optical communication - which uses light to transmit information - is seen as a serious contender to break this communications bottleneck.

These PIC systems will be particularly useful in addressing the 21st century explosion in bandwidth and computing power needs - including advanced data centers, cutting-edge medical research, secure financial transactions and next-generation gaming capabilities - increasing speed by up to 60 percent, while reducing power consumption by as much as 90 percent.

New York State Assembly Speaker Sheldon Silver said, "The agreement reached by the APIC Corporation and UAlbany's College of Nanoscale Science and Engineering is great news for the Capital Region and further attests to the effectiveness of our public/private economic development model. This is how we will create jobs, spin-off business opportunities, spur technological advancement, and rebuild our state economy in this new millennium. I commend the APIC Corporation for its wise decision and I am confident that with the leadership of Dr. Alain Kaloyeros, Albany Nano will remain 'the place to be' for cutting-edge nanotech R&D and commercialization."

Dr. Raj Dutt, Chairman of the Board and CEO of APIC Corporation, said, "APIC Corporation and its commercial arm PhotonIC Corp. is very excited about our partnership with the College of Nanoscale Science and Engineering, a world-class education, research, development and technology resource. Combining the unparalleled capabilities of CNSE with APIC's leading-edge photonics technology will enable advanced photonics integration with electronics and accelerate its introduction into the commercial marketplace. Budgeted at $10 million over the next 18 months, this joint program will expand both CNSE's and APIC's technical workforce in Albany, NY and Culver City, CA, and pave the way for further collaboration in the future."

CNSE Senior Vice President and Chief Executive Officer Dr. Alain E. Kaloyeros said, "The UAlbany NanoCollege is delighted to launch this partnership with APIC Corporation, which further builds on the vision, support and investment of Speaker Sheldon Silver and the New York State Assembly in establishing the NanoCollege and New York State as global hubs for nanotechnology innovation, education, and economic development and growth. This collaboration will enable APIC, a recognized leader in next-generation photonics technologies, to break new ground in the development of innovative photonics integrated circuits, and put CNSE at the leading edge of systems and interconnect research, development and commercialization, while enhancing the state-of-the-art capabilities at CNSE's Albany NanoTech Complex."

The partnership between APIC and CNSE also includes the potential for further R&D initiatives in the future, which may involve the location of additional APIC employees at CNSE's Albany NanoTech Complex.

####

About UAlbany NanoCollege
The UAlbany CNSE is the first college in the world dedicated to education, research, development, and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience, and nanoeconomics. CNSE’s Albany NanoTech Complex is the most advanced research enterprise of its kind at any university in the world. With over $7 billion in high-tech investments, the 800,000-square-foot complex attracts corporate partners from around the world and offers students a one-of-a-kind academic experience. The UAlbany NanoCollege houses the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 80,000 square feet of Class 1 capable cleanrooms. More than 2,500 scientists, researchers, engineers, students, and faculty work on site, from companies including IBM, GlobalFoundries, SEMATECH, Toshiba, Samsung, Applied Materials, Tokyo Electron, ASML, Novellus Systems, Vistec Lithography and Atotech. An expansion now underway is projected to increase the size of CNSE’s Albany NanoTech Complex to over 1,250,000 square feet of next-generation infrastructure housing over 135,000 square feet of Class 1 capable cleanrooms and more than 3,750 scientists, researchers and engineers from CNSE and global corporations.

About APIC.
APIC Corporation is headquartered at 5800 Uplander Way, Culver City, CA 90230. Tel: (310) 642-7975 ext. 125 with offices in Washington D.C.; Boston, MA; Palo Alto, CA; Melbourne, FL, Albany, NY and advanced Photonics laboratory facilities in Honolulu, HI. APIC Corporation is a world leader and supplier to the US Military in the development of photonic integrated circuits (PIC).

For more information, please click here

Contacts:
Steve Janack
CNSE
Vice President
Marketing and Communications
(phone) 518-956-7322
(cell) 518-312-5009


Stuart Rowlands
APIC Corporation
(phone) 323-850-1088
(cell) 323-595-9969

Copyright © UAlbany NanoCollege

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Chip Technology

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Optical computing/ Photonic computing

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Putting a new spin on plasmonics: Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects May 7th, 2015

Rice scientists use light to probe acoustic tuning in gold nanodisks: Rice University experts demonstrate new method for optomechanical tuning May 7th, 2015

Nanoelectronics

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

Channeling valleytronics in graphene: Berkeley Lab researchers discover 1-D conducting channels in bilayer graphene May 6th, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Environment

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Directa Plus in Barcelona to present the innovative project GEnIuS for oil spills clean-up activities: The company has created a graphene-based product for the remediation of water contaminated by oil and hydrocarbons May 21st, 2015

Nano-policing pollution May 13th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Photonics/Optics/Lasers

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Alliances/Partnerships/Distributorships

Samtec, Global Provider of Interconnect Systems, Joins IRT Nanoelec Silicon Photonics Program May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

DiATOME enables surface preparation for AFM and FIB May 19th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project