Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > CO2 makes life difficult for algae

Abstract:
The acidification of the world's oceans could have major consequences for the marine environment. New research shows that coccoliths, which are an important part of the marine environment, dissolve when seawater acidifies. Associate Professor Tue Hassenkam and colleagues at the Nano-Science Center, University of Copenhagen, are the first to have measured how individual coccoliths react to water with different degrees of acidity.

CO2 makes life difficult for algae

Copenhagen, Denmark | Posted on May 12th, 2011

Coccoliths are very small shells of calcium carbonate that encapsulate a number of species of alga. Algae plays an important role in the global carbon-oxygen cycle and thus in our ecosystem. Our seawater has changed because of our emissions of greenhouse gases and therefore it was interesting for Hassenkam and his colleagues to investigate how the coccoliths react to different types of water.

"We know that the world's oceans are acidifying due to our emissions of CO2 and that is why it is interesting for us to find out how the coccoliths are reacting to it. We have studied algae from both fossils and living coccoliths, and it appears that both are protected from dissolution by a very thin layer of organic material that the algae formed, even though the seawater is extremely unsaturated relative to calcite. The protection of the organic material is lost when the pH is lowered slightly. In fact, it turns out that the shell falls completely apart when we do experiments in water with a pH value that many researchers believe will be the found in the world oceans in the year 2100 due to the CO2 levels," explains Tue Hassenkam, who is part of the NanoGeoScience research group at the Department of Chemistry, University of Copenhagen.

Professor of Biological Oceanography Katherine Richardson has followed research in the acidification of the oceans and climate change in general and she hopes that the results can help to bring the issue into public focus.

"These findings underscore that the acidification of the oceans is a serious problem. The acidification has enormous consequences not only for coccoliths, but also for many other marine organisms as well as the global carbon cycle," explains Katherine Richardson, professor of biological oceanography and vice dean at the Faculty of Science at the University of Copenhagen.

Nano-microscope is the key
Tue Hassenkam is a nano-specialist and has been working for several years with the AFM (Atomic Force Microscope), which is an important instrument for nano researchers, because they can see and manipulate very small samples of, for example, geological materials like coccoliths.

"Using the AFM I weighed the coccoliths before and after they have been immersed in water with different compositions. The coccoliths weigh around 500 pg (0.0000000005 g). Specifically, I have set a coccolith on tip of an AFM and immersed the tip in water and looked at and weighed the coccolith afterwards. In that way I can say something about how much and how long it takes for a coccolith to dissolve in water with different degrees of acidity. I can use these results to say something about how important the water acidity is for the marine environment," explains Tue Hassenkam, who has just had his results published in the journal PNAS.

Measurements of such small materials are unique and very precise and there is therefore great potential in using the technique on other materials. For example, Tue Hassenkam has recently measured the dissolution of salt in ash from the Icelandic volcano Eyjafjallajökull which erupted last year.

####

For more information, please click here

Contacts:
Associate Professor Tue Hassenkam
Nano-Science Center
Phone: +45 26 55 20 30
Email:

Head of Administration & PR Rikke Bøyesen
Nano-Science Center
Phone: +45 28 75 04 13
Email:

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project