Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The University of St Andrews chooses NanoSight NTA system for exosomes characterization

Dr Simon Powis with his NanoSight LM10 system to study exosome behaviour
Dr Simon Powis with his NanoSight LM10 system to study exosome behaviour

Abstract:
NanoSight, world-leading manufacturers of unique nanoparticle characterization technology reports that the School of Medicine at the University of St Andrews is using nanoparticle tracking analysis, NTA, to characterize exosome behaviour.

The University of St Andrews chooses NanoSight NTA system for exosomes characterization

Salisbury, UK | Posted on May 10th, 2011

Dr Simon Powis and his colleagues at the University of St Andrews are working to understand how a set of molecules involved in the immune system's defence against intracellular pathogens function. These molecules are called major histocompatibility complex (MHC) class I molecules, and they are expressed on almost every cell in the body. Their relevance to medicine is most commonly known because they are one of the key sets of genes that have to be closely matched when an organ transplant is made, otherwise the transplant can be rejected. It is now known that their precise role in the normal immune system is to bind small fragments of degraded viral proteins which they display to T lymphocytes of the immune system. This allows the specific detection of 'foreign' proteins, i.e. from potential pathogens, and allows the immune system to specifically detect and kill infected cells, whilst leaving a neighbouring uninfected cell alone. In addition, there is one fascinating autoimmune disease closely associated with a particular type of MHC class I molecule. Over 90% of patients with a type of inflammatory arthritis called ankylosing spondylitis which affects the spine, expresses one specific type of MHC class I molecule called HLA-B27. The link between this arthritic condition and HLA-B27 has been known for almost 40 years, but the disease mechanism and how HLA-B27 is involved is yet to be understood.

Whilst the Powis group were studying MHC class I molecules expressed on exosomes, it was discovered that they can express a novel type of structure. The tail region of the MHC class I molecule, which sits inside the exosome, can frequently form a disulfide-bond linkage to another MHC class I molecule, thus bringing two molecules closely together in a dimeric structure. This normally does not happen on cells because the cytoplasm has a reducing environment, preventing disulfide bonds from forming. However, in exosomes the capacity to maintain a reducing environment seems to have been lost. The group is now studying whether cells of the immune system see these MHC class I dimers structures on exosomes and respond to them. Another key question is what peptides are found bound to MHC class I molecules on exosomes. The exosome production pathway is not the normal route for MHC class I molecules to get to the cell surface, so the possibility that different peptides are found in this subset of exosomal MHC class I molecules is a real possibility. To be able to study these exosomes from a variety of immune cells, it is necessary to detect their presence and size in cultures. This is the reason for the team choosing the NanoSight NTA approach with the LM10 system.

Prior to using NanoSight, flow cytometry had proved a valuable tool in the preliminary characterisation of the exosomes released by immune cells. Dr Powis says "The NanoSight approach allows a more accurate determination of size and relative concentration both before and after purification. This allows us to monitor the release of exosomes in the range 30-150nm after activation with a variety of immune stimuli relevant to both normal and aberrant immune responses in a way not previously visible with flow cytometry."

To learn more about nanoparticle characterization using Nanoparticle Tracking Analysis, NTA, please visit the company website (www.nanosight.com) and register for the latest issue of NanoTrail, the company's electronic newsletter.

####

About NanoSight
NanoSight delivers the world’s most versatile and proven multi-parameter nanoparticle analysis in a single instrument.

NanoSight visualizes, measures and characterizes virtually all nanoparticles. Particle size, concentration, Zeta potential and aggregation can all be analyzed while a fluorescence mode provides differentiation of labelled particles. NanoSight presents real time monitoring of the subtle changes in the characteristics of particle populations with all of these analyses uniquely confirmed by visual validation.

NanoSight’s “Nanoparticle Tracking Analysis” (NTA) detects and visualizes populations of nanoparticles in liquids down to 10nm, dependent on material, and measures the size of each particle from direct observations of diffusion. This particle-by-particle methodology goes beyond traditional light scattering and other ensemble techniques in providing high-resolution particle size distributions. Additionally, NanoSight measures concentration and validates data with information-rich video files of the particles moving under Brownian motion.

NanoSight’s comprehensive characterization matches the demands of complex biological systems, hence its wide application in development of drug delivery systems, of viral vaccines, in nanotoxicology and in biodiagnostics. This real-time data gives insight into the kinetics of protein aggregation and other time-dependent phenomena in a qualitative and quantitative manner.

NanoSight has a growing role in biodiagnostics, being proven in detection and speciation of nanovesicles (exosomes) and microvesicles. As functionalized nanoparticles increasingly fulfill their potential in biodiagnostics, NanoSight is ever more the analytical platform of choice.

NanoSight demonstrates worldwide success through rapid adoption of NTA, having installed more than 300 systems worldwide with users including BASF, GlaxoSmithKline, Merck, Novartis, Pfizer, Proctor and Gamble, Roche and Unilever together with the most eminent universities and research institutes. In addition to this user base more than 150 third party papers citing NanoSight results consolidate NanoSight’s leadership position in nanoparticle characterization. For more information, visit the NanoSight website (www.nanosight.com).

For more information, please click here

Contacts:
NanoSight Limited
Minton Park
London Road
Amesbury SP4 7RT
T +44 (0) 1980 676060
F +44 (0) 1980 624703


NetDyaLog Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
T +44 (0) 1799 521881
M +44 (0) 7843 012997

Copyright © NanoSight

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Imaging

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Pittcon News: Renishaw adds to the comprehensive imaging options available with its inVia confocal Raman microscope January 27th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Tools

Hiden Gas Analysers at PITTCON 2015 | Visit us on Booth No. 1127 January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

New-Contracts/Sales/Customers

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Industrial Nanotech, Inc. Announces New OEM Customer January 27th, 2015

DELMIC reports on applications of their SPARC technology at the Chalmers University of Technology in Gothenburg, Sweden December 16th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE