Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pairing Quantum Dots with Fullerenes for Nanoscale Photovoltaics: Surface-based assembly produces promising power-generating units for molecular electronics

Abstract:
In a step toward engineering ever-smaller electronic devices, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have assembled nanoscale pairings of particles that show promise as miniaturized power sources. Composed of light-absorbing, colloidal quantum dots linked to carbon-based fullerene nanoparticles, these tiny two-particle systems can convert light to electricity in a precisely controlled way.

Pairing Quantum Dots with Fullerenes for Nanoscale Photovoltaics: Surface-based assembly produces promising power-generating units for molecular electronics

Upton, NY | Posted on May 10th, 2011

"This is the first demonstration of a hybrid inorganic/organic, dimeric (two-particle) material that acts as an electron donor-bridge-acceptor system for converting light to electrical current," said Brookhaven physical chemist Mircea Cotlet, lead author of a paper describing the dimers and their assembly method in Angewandte Chemie.

By varying the length of the linker molecules and the size of the quantum dots, the scientists can control the rate and the magnitude of fluctuations in light-induced electron transfer at the level of the individual dimer. "This control makes these dimers promising power-generating units for molecular electronics or more efficient photovoltaic solar cells," said Cotlet, who conducted this research with materials scientist Zhihua Xu at Brookhaven's Center for Functional Nanomaterials (CFN, www.bnl.gov/cfn/).

Scientists seeking to develop molecular electronics have been very interested in organic donor-bridge-acceptor systems because they have a wide range of charge transport mechanisms and because their charge-transfer properties can be controlled by varying their chemistry. Recently, quantum dots have been combined with electron-accepting materials such as dyes, fullerenes, and titanium oxide to produce dye-sensitized and hybrid solar cells in the hope that the light-absorbing and size-dependent emission properties of quantum dots would boost the efficiency of such devices. But so far, the power conversion rates of these systems have remained quite low.

"Efforts to understand the processes involved so as to engineer improved systems have generally looked at averaged behavior in blended or layer-by-layer structures rather than the response of individual, well-controlled hybrid donor-acceptor architectures," said Xu.

The precision fabrication method developed by the Brookhaven scientists allows them to carefully control particle size and interparticle distance so they can explore conditions for light-induced electron transfer between individual quantum dots and electron-accepting fullerenes at the single molecule level.

The entire assembly process takes place on a surface and in a stepwise fashion to limit the interactions of the components (particles), which could otherwise combine in a number of ways if assembled by solution-based methods. This surface-based assembly also achieves controlled, one-to-one nanoparticle pairing.

To identify the optimal architectural arrangement for the particles, the scientists strategically varied the size of the quantum dots - which absorb and emit light at different frequencies according to their size - and the length of the bridge molecules connecting the nanoparticles. For each arrangement, they measured the electron transfer rate using single molecule spectroscopy.

"This method removes ensemble averaging and reveals a system's heterogeneity - for example fluctuating electron transfer rates - which is something that conventional spectroscopic methods cannot always do," Cotlet said.

The scientists found that reducing quantum dot size and the length of the linker molecules led to enhancements in the electron transfer rate and suppression of electron transfer fluctuations.

"This suppression of electron transfer fluctuation in dimers with smaller quantum dot size leads to a stable charge generation rate, which can have a positive impact on the application of these dimers in molecular electronics, including potentially in miniature and large-area photovoltaics," Cotlet said.

"Studying the charge separation and recombination processes in these simplified and well-controlled dimer structures helps us to understand the more complicated photon-to-electron conversion processes in large-area solar cells, and eventually improve their photovoltaic efficiency," Xu added.

A U.S. patent application is pending on the method and the materials resulting from using the technique, and the technology is available for licensing. Please contact Kimberley Elcess at (631) 344-4151, or , for more information.

This work was funded by the DOE Office of Science.

####

About Brookhaven National Laboratory
The Center for Functional Nanomaterials at Brookhaven National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh

(631) 344-8350
or
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific Paper: Quantum Dot-Bridge-Fullerene Heterodimers with Controlled Photoinduced Electron Transfe

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Laboratories

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Nanotubes/Buckyballs/Fullerenes

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Patents/IP/Tech Transfer/Licensing

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Leti to Tackle Tomorrow's Research Strategies with Stanford University’s SystemX Alliance: French R&D Center Is the First Research Institute to Join the Collaboration and Provides Bridges Between Academia and Industry, Leveraging Alliance’s Potential October 4th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Quantum Dots/Rods

Particle Works creates range of high performance quantum dots February 23rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Two electrons go on a quantum walk and end up in a qudit: Russian scientists find a way to reliably connect quantum elements December 13th, 2016

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project