Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New sensor developed by MIT chemical engineers can detect tiny traces of explosives

Abstract:
MIT researchers have created a new detector so sensitive it can pick up a single molecule of an explosive such as TNT.

New sensor developed by MIT chemical engineers can detect tiny traces of explosives

Cambridge, MA | Posted on May 9th, 2011

To create the sensors, chemical engineers led by Michael Strano coated carbon nanotubes — hollow, one-atom-thick cylinders made of pure carbon — with protein fragments normally found in bee venom. This is the first time those proteins have been shown to react to explosives, specifically a class known as nitro-aromatic compounds that includes TNT.

If developed into commercial devices, such sensors would be far more sensitive than existing explosives detectors — commonly used at airports, for example — which use spectrometry to analyze charged particles as they move through the air.

"Ion mobility spectrometers are widely deployed because they are inexpensive and very reliable. However, this next generation of nanosensors can improve upon this by having the ultimate detection limit, [detecting] single molecules of explosives at room temperature and atmospheric pressure," says Strano, the Charles (1951) and Hilda Roddey Career Development Associate Professor of Chemical Engineering.

A former graduate student in Strano's lab, Daniel Heller (now a Damon Runyon Fellow at MIT's David H. Koch Institute for Integrative Cancer Research), is lead author of a paper describing the technology in the Proceedings of the National Academy of Sciences. The paper appears online this week.

Strano has filed for a patent on the technology, which makes use of protein fragments called bombolitins. "Scientists have studied these peptides, but as far as we know, they've never been shown to have an affinity for and recognize explosive molecules in any way," he says.

In recent years, Strano's lab has developed carbon-nanotube sensors for a variety of molecules, including nitric oxide, hydrogen peroxide and toxic agents such as the nerve gas sarin. Such sensors take advantage of carbon nanotubes' natural fluorescence, by coupling them to a molecule that binds to a specific target. When the target is bound, the tubes' fluorescence brightens or dims.

The new explosives sensor works in a slightly different way. When the target binds to the bee-venom proteins coating the nanotubes, it shifts the fluorescent light's wavelength, instead of changing its intensity. The researchers built a new type of microscope to read the signal, which can't be seen with the naked eye. This type of sensor, the first of its kind, is easier to work with because it is not influenced by ambient light.

"For a fluorescent sensor, using the intensity of the fluorescent light to read the signal is more error-prone and noisier than measuring a wavelength," Strano says.

Each nanotube-peptide combination reacts differently to different nitro-aromatic compounds. By using several different nanotubes coated in different bombolitins, the researchers can identify a unique "fingerprint" for each explosive they might want to detect. The nanotubes can also sense the breakdown products of such explosives.

"Compounds such as TNT decompose in the environment, creating other molecule types, and those derivatives could also be identified with this type of sensor," Strano says. "Because molecules in the environment are constantly changing into other chemicals, we need sensor platforms that can detect the entire network and classes of chemicals, instead of just one type."

The researchers also showed that the nanotubes can detect two pesticides that are nitro-aromatic compounds as well, making them potentially useful as environmental sensors. The research was funded by the Institute for Soldier Nanotechnologies at MIT.

Philip Collins, a professor of physics at the University of California at Irvine, says the new approach is a novel extension of Strano's previous work on carbon-nanotube sensors. "It's nice what they've done — combined a couple of different things that are not sensitive to explosives, and shown that the combination is sensitive," says Collins, who was not involved in this research.

The technology has already drawn commercial and military interest, Strano says. For the sensor to become practical for widespread use, it would have to be coupled with a commercially available concentrator that would bring any molecules floating in the air in contact with the carbon nanotubes.

"It doesn't mean that we are ready to put these onto a subway and detect explosives immediately. But it does mean that now the sensor itself is no longer the bottleneck," Strano says. "If there's one molecule in a sample, and if you can get it to the sensor, you can now detect and quantify it."

Other researchers from MIT involved in the work include former postdocs Nitish Nair and Paul Barone; graduate students Jingqing Zhang, Ardemis Boghossian and Nigel Reuel; and undergraduates George Pratt '10 and current junior Adam Hansborough.

Written by Anne Trafton, MIT News Office

####

For more information, please click here

Contacts:
Caroline McCall
MIT News Office
E:
T: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Sensors

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Discoveries

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Homeland Security

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Military

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Tailored flexible illusion coatings hide objects from detection October 13th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE