Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Why graphene holds the key to the future: In public lecture at UC Riverside on May 19, graphene expert Jeanie Lau will discuss wonders of the new exciting material

Abstract:
Graphene, a one-atom thick sheet of carbon atoms arranged in hexagonal rings, is the latest "wonder material" that has taken scientific communities and industrial sectors by storm.

Why graphene holds the key to the future: In public lecture at UC Riverside on May 19, graphene expert Jeanie Lau will discuss wonders of the new exciting material

Riverside, CA | Posted on May 9th, 2011

Bearing excellent material properties, such as high current-carrying capacity and thermal conductivity, graphene is ideally suited for creating components for semiconductor circuits and computers. Moreover, it enables table-top experimental tests of a number of phenomena in physics involving quantum mechanics and relativity.

Jeanie Lau, an associate professor of physics and astronomy at the University of California, Riverside, will give a free public lecture on campus to discuss what graphene is, why it is interesting, what novel properties it boasts, and how it may impact our lives in 10-20 years.

Titled "Size Matters: Nanotechnology & Other Wonders in Carbon Flatland," the hour-long lecture will begin at 6 p.m., May 19, in Rooms D-E, University Extension Center (UNEX).

Doors open at 5:30 p.m. Seating is open. Parking at UNEX will be free for lecture attendees.

"Graphene has many wondrous properties that are literally mind-boggling," said Lau, recipient of a 2009 Presidential Early Career Award for Scientists and Engineers. "For instance, it is stronger than steel yet softer than Saran wrap; it is transparent yet conducts electricity and heat much better than copper. It has been hailed as the most promising material to replace silicon for the next generation of electronics. It is produced by every school kid, but was only 'discovered' in 2004 and won the 2010 Nobel Prize in physics for its co-discoverers."

Graphene's planar geometry allows the fabrication of electronic devices and the tailoring of a variety of electrical properties. Because it is only one-atom thick, it can potentially be used to make ultra-small devices and further miniaturize electronics. Scientifically, it is a new model system for condensed-matter physics, the branch of physics that deals with the physical properties of solid materials.

Lau's talk is being hosted by UCR's College of Natural and Agricultural Sciences and the Science Circle, a group of university and community members committed to advancing science at UCR and in Inland Southern California.

The talk is the last of four lectures scheduled this year. The lecture series, titled "Science & Society: Major Issues of the 21st Century," aims to boost the public's awareness and understanding of science and of how scientists work.

####

For more information, please click here

Contacts:
Iqbal Pittalwala

951-827-6050

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Graphene/ Graphite

Cooling graphene-based film close to pilot-scale production April 30th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Chip Technology

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Events/Classes

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Introducing the RE標ORK Bio-inspired Robotics Summit in Berlin April 27th, 2016

Quantum nanoscience

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

The atom without properties April 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic