Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Measurement of 'hot' electrons could have solar energy payoff: Nanoantennas hold promise for infrared photovoltaics

Abstract:
Basic scientific curiosity paid off in unexpected ways when Rice University researchers investigating the fundamental physics of nanomaterials discovered a new technology that could dramatically improve solar energy panels.

Measurement of 'hot' electrons could have solar energy payoff: Nanoantennas hold promise for infrared photovoltaics

Houston, TX | Posted on May 5th, 2011

The research is described in a new paper this week in the journal Science.

"We're merging the optics of nanoscale antennas with the electronics of semiconductors," said lead researcher Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering. "There's no practical way to directly detect infrared light with silicon, but we've shown that it is possible if you marry the semiconductor to a nanoantenna. We expect this technique will be used in new scientific instruments for infrared-light detection and for higher-efficiency solar cells."

More than a third of the solar energy on Earth arrives in the form of infrared light. But silicon -- the material that's used to convert sunlight into electricity in the vast majority of today's solar panels -- cannot capture infrared light's energy. Every semiconductor, including silicon, has a "bandgap" where light below a certain frequency passes directly through the material and is unable to generate an electrical current. By attaching a metal nanoantenna to the silicon, where the tiny antenna is specially tuned to interact with infrared light, the Rice team showed they could extend the frequency range for electricity generation into the infrared. When infrared light hits the antenna, it creates a "plasmon," a wave of energy that sloshes through the antenna's ocean of free electrons. The study of plasmons is one of Halas' specialties, and the new paper resulted from basic research into the physics of plasmons that began in her lab years ago.

It has been known that plasmons decay and give up their energy in two ways; they either emit a photon of light or they convert the light energy into heat. The heating process begins when the plasmon transfers its energy to a single electron -- a 'hot' electron. Rice graduate student Mark Knight, lead author on the paper, together with Rice theoretical physicist Peter Nordlander, his graduate student Heidar Sobhani, and Halas set out to design an experiment to directly detect the hot electrons resulting from plasmon decay.

Patterning a metallic nanoantenna directly onto a semiconductor to create a "Schottky barrier," Knight showed that the infrared light striking the antenna would result in a hot electron that could jump the barrier, which creates an electrical current. This works for infrared light at frequencies that would otherwise pass directly through the device.

"The nanoantenna-diodes we created to detect plasmon-generated hot electrons are already pretty good at harvesting infrared light and turning it directly into electricity," Knight said. "We are eager to see whether this expansion of light-harvesting to infrared frequencies will directly result in higher-efficiency solar cells."

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Discoveries

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Energy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Solar/Photovoltaic

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE