Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The University of Leipzig adds JPK's CellHesion 200 capability to enhance cell-cell force measurements

Steve Pawlizak, a post graduate student in Professor Käs' group at the University of Leipzig using the JPK CellHesion 200 system.
Steve Pawlizak, a post graduate student in Professor Käs' group at the University of Leipzig using the JPK CellHesion 200 system.

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports that the University of Leipzig has chosen the CellHesion® 200 system for their Institute of Experimental Physics I.

The University of Leipzig adds JPK's CellHesion 200 capability to enhance cell-cell force measurements

Berlin, Germany | Posted on May 4th, 2011

The research of the Institute of Experimental Physics I is focused on soft condensed matter as bulk material, in interaction with surfaces and interfaces, and with single molecules. The systems under study cover a wealth like small tracer molecules, liquid crystals, polymers, polymer-networks, proteins, and even living biological cells. It is objective of the research of the Institute of Experimental Physics I to explore the physical basis of structure-property relationships in these systems.

Professor Josef A. Käs moved his group to Leipzig in 2001 from the University of Texas at Austin. At this time, he became one of the first users of the JPK NanoWizard® series of atomic force microscopes to start a close series of interactions between his group and JPK. Most recently, Professor Käs added the JPK CellHesion 200 system to provide the ability to study the interplay between compartmentalization of cell and tumor spreading.

Compartmentalization is the formation of cellular compartments (e.g. tissues and organs). It generates well-defined boundaries for various differentiated cell types. Cells of the same type adhere better to each other, whereas mixtures of different migrating cell types segregate. According to the differential adhesion hypothesis (Malcom S. Steinberg, 1960s), cell sorting and formation of cellular compartments result from different adhesiveness of participating cells. The group tries to apply and verify the concept of compartmentalization and differential adhesion hypothesis to tumor development and spreading. It is known that young tumor cells are confined to their compartment of origin. With rising malignancy up to metastasis, tumor cells become able to overcome compartment boundaries. The goal is to clarify whether tumor stages can be characterized by cellular adhesiveness. This is why they are measuring healthy and cancerous cells of different malignancy with the JPK CellHesion 200.

Another project applying CellHesion 200 is one studying biocompatibility. Magnetic shape memory alloys are a class of smart materials which have a high potential for actuators in biomedical applications. These are tested for their biocompatibility by coating those materials with different cell adhesion proteins and using the CellHesion 200 for cell-substrate adhesion measurements.

JPK's CellHesion 200 system is a dedicated stand-alone platform for cell adhesion and cytomechanics studies to be used with inverted optical or confocal microscopes. It enables the quantification of single cell-cell and cell-surface interactions under physiological conditions. This ground-breaking technique, known as single cell force spectroscopy (SCFS), measures the interaction forces between a living cell bound to a cantilever and a target cell, functionalized substrate or biomaterial. In parallel, cytomechanical characteristics including stiffness and elasticity can be determined. Data can be measured for a number of important parameters involved in cellular adhesion, including maximum cell adhesion force, single unbinding events, tether characteristics, and work of removal.

Choosing to work with JPK has proved very beneficial for the Käs group. Speaking on behalf of the group, post graduate student Steve Pawlizak says "In our opinion, JPK offers the best SFM solution for biological or biophysical application available on the market. In a convenient way, it enables simultaneous use of SFM and a variety of light microscopy techniques such as bright field, phase contrast, epi-fluorescence as well as laser scanning microscopy on inverted research microscopes. This is absolutely necessary for our applications in cellular biophysics."

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo (Japan) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
Jezz Leckenby
NetDyaLog Limited
T: +44 (0) 1799 521881
M: +44 (0) 7843 012997
or
Claudia Boettcher
JPK Instruments
T: +49 (0) 30 5331 12070

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Imaging

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Announcements

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tools

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

New-Contracts/Sales/Customers

SENAI Outfits New Tribology Lab with Bruker UMT TriboLab Systems: Brazil’s National Service for Industrial Training Invests in Six Bruker Tribometers September 14th, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic