Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Improved Electrical Conductivity in Polymeric Composites

Percolating network of rods and spheres
Percolating network of rods and spheres

Abstract:
Physicists at the University of Luxembourg have developed a new method to improve the electrical conductivity of polymeric composites. Polymeric composites consist of two or more materials and are used for example to shield off electrostatics in airplanes. By introducing additives into polymeric composites, favourable properties can be achieved. For instance, they develop favourable electrical properties when reinforced with carbon nanotubes. Such composites are used to make flat-panel displays and solar cells more efficient.

Improved Electrical Conductivity in Polymeric Composites

Luxembourg | Posted on May 3rd, 2011

The researchers in Luxembourg, in cooperation with scientists from the Netherlands, have studied the electrical percolation of carbon nanotubes in a polymer matrix and shown the percolation threshold - the point at which the polymer composite becomes conductive - can be considerably lowered if small quantities of a conductive polymer latex are added. The simulations were done in Luxembourg, while the experiments took place at Eindhoven University.

"In this project, the idea is to use as little as possible carbon nanotubes and still benefit from their favourable properties", says the project leader at the University of Luxembourg, Prof. Tania Schilling, "we have discovered that, by adding a second component, we could make use of the resulting interactions to reach our goal." By mixing finely dispersed particles, so-called colloidal particles, of differing shapes and sizes in the medium, system-spanning networks form: the prerequisite for electrically conductive composites.

The recent finding of the materials scientists of the University of Luxembourg was published in the peer-reviewed, scientific journal „Nature Nanotechnology". This finding is a result of a cooperation of scientists at the University of Luxembourg, the Technische Universiteit Eindhoven and the Dutch Polymer Institute.

Full bibliographic information

Controlling electrical percolation in multicomponent carbon nanotube dispersions
by Andriy V. Kyrylyuk,Marie Claire Hermant, Tanja Schilling, Bert Klumperman, Cor E. Koning & Paul van der Schoot

####

For more information, please click here

Contacts:
Tanja Schilling
University of Luxembourg
+352 46 66 44 6970

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Physics

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Breaking the symmetry in the quantum realm May 31st, 2019

Display technology/LEDs/SS Lighting/OLEDs

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

CEA-Leti Develops CMOS Process for High-Performance MicroLEDs That Could Overcome Display-Size Obstacles: New Concept Creates All-in-One RGB MicroLEDs, Eliminates Several Transfer Steps to Receiving Substrate & Boosts Performance May 16th, 2019

Micro-LEDs achieve superior brightness with Picosun’s ALD technology April 23rd, 2019

Flexible Electronics

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

2D borophene gets a closer look: Rice, Northwestern find new ways to image, characterize unique material April 11th, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Discoveries

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Energy

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Solar/Photovoltaic

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project