Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NRL Researchers Take a Step Toward Valleytronics

The band structure of graphene with its two valleys shown in blue and red.
The band structure of graphene with its two valleys shown in blue and red.

Abstract:
Valley-based electronics, also known as valleytronics, is one step closer to reality. Two researchers at the Naval Research Laboratory have shown that the valley degree of freedom in graphene can be polarized through scattering off a line defect. Unlike previously proposed valley filters in graphene, which rely on confined structures that have proven hard to achieve experimentally, the present work is based on a naturally occurring line defect that has already been observed. The discovery was published in Physical Review Letters on March 28, 2011 and was also the subject of a separate Viewpoint article in Physics.

NRL Researchers Take a Step Toward Valleytronics

Washington, DC | Posted on May 1st, 2011


manipulated and interrogated through electric fields. The advantage of spin representations, used in the field of spintronics, is their superior shielding from undesired electric fluctuations in the environment, making the information in these latter representations more robust. In the future, there might be a third middle-ground alternative in the valley degree of freedom that exists in certain crystals, including graphene.

The valley degree of freedom in graphene gained attention in 2007 when it was proposed that Information in solid-state, either classical or quantum, is generally carried by electrons and holes. The information can be encoded in various degrees of freedom such as charge or spin. Charge representations, for example the absence or presence of an electron in a quantum dot, are attractive
as they are easily electrons and holes could be filtered according to which valley they occupy.

Unfortunately, the structures required for this and subsequent valley filters are difficult to fabricate, and as a result a valley filter has yet to be demonstrated experimentally. The present study from NRL shows that an extended line defect in graphene acts as a natural valley filter. "As the structure is already available, we are hopeful that valley-polarized currents could be generated in the near future" said Dr. Daniel Gunlycke who made the discovery together with Dr. Carter White. Both work in NRL's Chemistry Division.

Valley refers to energy depressions in the band structure, which describes the energies of electron waves allowed by the symmetry of the crystal. For graphene, these regions form two pairs of cones that determine its low-bias response. As a large crystal momentum separates the two valleys, the valley degree of freedom is robust against slowly varying potentials, including scattering caused by low-energy acoustic phonons that often require low-bias electronic devices to operate at low temperatures typically only accessible in laboratories.

Valley polarization is achieved when electrons and holes in one valley are separated spatially from those in the other valley, but this is difficult to do as the two valleys have the same energies.

It was found, however, that this spatial separation can be obtained in connected graphene structures that possess reflection symmetry along a particular crystallographic direction with no bonds crossing the reflection plane. This property turns out to be present in a recently observed line defect in graphene. The reflection symmetry only permits electron waves that are symmetric to pass through the line defect. Anti-symmetric waves are reflected. By projecting an arbitrary low-energy wave in graphene onto its symmetric component, one gets the transmission amplitude through this defect, which is strongly dependent on the valley. Electron and hole waves approaching the line defect at a high angle of incidence results in a polarization near 100%.

There is a long way to go before valleytronics can become a viable technology, explains Gunlycke. The recent advance, however, provides a realistic way to reach a crucial milestone in its development. This research was supported by the Office of Naval Research, both directly and through the Naval Research Laboratory.

####

About Naval Research Laboratory
NRL is a campus-like complex of diverse scientific facilities, with a staff of more than 2,500 researchers, engineers, technicians and support personnel. Overall Laboratory management is under the direction of a Navy officer and civilian research director. The internal organization is organized into five directorates, four of which conduct scientific research, and the Naval Center for Space Technology.

For more information, please click here

Contacts:
Donna McKinney
(202) 767-2541

Copyright © Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

Graphene

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Discoveries

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Announcements

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE