Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Solar-thermal flat-panels that generate electric power: Boston College and MIT researchers see broad residential and industrial applications

Abstract:
High-performance nanotech materials arrayed on a flat panel platform demonstrated seven to eight times higher efficiency than previous solar thermoelectric generators, opening up solar-thermal electric power conversion to a broad range of residential and industrial uses, a team of researchers from Boston College and MIT report in the journal Nature Materials.

Solar-thermal flat-panels that generate electric power: Boston College and MIT researchers see broad residential and industrial applications

Chestnut Hill, MA | Posted on May 1st, 2011

Two technologies have dominated efforts to harness the power of the sun's energy. Photovoltaics convert sunlight into electric current, while solar-thermal power generation uses sunlight to heat water and produce thermal energy. Photovoltaic cells have been deployed widely as flat panels, while solar-thermal power generation employs sunlight-absorbing surfaces feasible in residential and large-scale industrial settings.

Because of limited material properties, solar thermal devices have heretofore failed to economically generate enough electric power. The team's introduced two innovations: a better light-absorbing surface through enhanced nanostructured thermoelectric materials, which was then placed within an energy-trapping, vacuum-sealed flat panel. Combined, both measures added enhanced electricity-generating capacity to solar-thermal power technology, said Boston College Professor of Physics Zhifeng Ren, a co-author of the paper.

"We have developed a flat panel that is a hybrid capable of generating hot water and electricity in the same system," said Ren. "The ability to generate electricity by improving existing technology at minimal cost makes this type of power generation self-sustaining from a cost standpoint."

Using nanotechnology engineering methods, the team combined high-performance thermoelectric materials and spectrally-selective solar absorbers in a vacuum-sealed chamber to boost conversion efficiency, according to the co-authors, which include MIT's Soderberg Professor of Power Engineering Gang Chen, Boston College and MIT graduate students and researchers at GMZ Energy, a Massachusetts clean energy research company co-founded by Ren and Chen.

The findings open up a promising new approach that has the potential to achieve cost-effective conversion of solar energy into electricity, an advance that should impact the rapidly expanding residential and industrial clean energy markets, according to Ren.

"Existing solar-thermal technologies do a good job generating hot water. For the new product, this will produce both hot water and electricity," said Ren. "Because of the new ability to generate valuable electricity, the system promises to give users a quicker payback on their investment. This new technology can shorten the payback time by one third."

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project