Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Origami: Not just for paper anymore--DNA, folded into complex shapes, could have major impact on nanotechnology

Mark Bathe, the Samuel A. Goldblith Assistant Professor of Applied Biology	
Photo: Dominick Reuter
Mark Bathe, the Samuel A. Goldblith Assistant Professor of Applied Biology
Photo: Dominick Reuter

Abstract:
While the primary job of DNA in cells is to carry genetic information from one generation to the next, some scientists also see the highly stable and programmable molecule as an ideal building material for nanoscale structures that could be used to deliver drugs, act as biosensors, perform artificial photosynthesis and more.

Origami: Not just for paper anymore--DNA, folded into complex shapes, could have major impact on nanotechnology

Cambridge, MA | Posted on April 27th, 2011

Trying to build DNA structures on a large scale was once considered unthinkable. But about five years ago, Caltech computational bioengineer Paul Rothemund laid out a new design strategy called DNA origami: the construction of two-dimensional shapes from a DNA strand folded over on itself and secured by short "staple" strands. Several years later, William Shih's lab at Harvard Medical School translated this concept to three dimensions, allowing design of complex curved and bent structures that opened new avenues for synthetic biological design at the nanoscale.

A major hurdle to these increasingly complex designs has been automation of the design process. Now a team at MIT, led by biological engineer Mark Bathe, has developed software that makes it easier to predict the three-dimensional shape that will result from a given DNA template. While the software doesn't fully automate the design process, it makes it considerably easier for designers to create complex 3-D structures, controlling their flexibility and potentially their folding stability.

"We ultimately seek a design tool where you can start with a picture of the complex three-dimensional shape of interest, and the algorithm searches for optimal sequence combinations," says Bathe, the Samuel A. Goldblith Assistant Professor of Applied Biology. "In order to make this technology for nanoassembly available to the broader community including biologists, chemists, and materials scientists without expertise in the DNA origami technique the computational tool needs to be fully automated, with a minimum of human input or intervention."

Bathe and his colleagues described their new software in the Feb. 25 issue of Nature Methods. In that paper, they also provide a primer on creating DNA origami with collaborator Hendrik Dietz at the Technische Universitaet Muenchen. "One bottleneck for making the technology more broadly useful is that only a small group of specialized researchers are trained in scaffolded DNA origami design," Bathe says.

DNA consists of a string of four nucleotide bases known as A, T, G and C, which make the molecule easy to program. According to nature's rules, A binds only with T, and G only with C. "With DNA, at the small scale, you can program these sequences to self-assemble and fold into a very specific final structure, with separate strands brought together to make larger-scale objects," Bathe says.

Rothemund's origami design strategy is based on the idea of getting a long strand of DNA to fold in two dimensions, as if laid on a flat surface. In his first paper outlining the method, he used a viral genome consisting of approximately 8,000 nucleotides to create 2-D stars, triangles and smiley faces.

That single strand of DNA serves as a "scaffold" for the rest of the structure. Hundreds of shorter strands, each about 20 to 40 bases in length, combine with the scaffold to hold it in its final, folded shape.

"DNA is in many ways better suited to self-assembly than proteins, whose physical properties are both difficult to control and sensitive to their environment," Bathe says.

Bathe's new software program interfaces with a software program from Shih's lab called caDNAno, which allows users to manually create scaffolded DNA origami from a two-dimensional layout. The new program, dubbed CanDo, takes caDNAno's 2-D blueprint and predicts the ultimate 3-D shape of the design. This resulting shape is often unintuitive, Bathe says, because DNA is a flexible object that twists, bends and stretches as it folds to form a complex 3-D shape.

Written by Anne Trafton, MIT News Office

####

For more information, please click here

Contacts:
Caroline McCall
MIT News Office
E:
T: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Nanomedicine

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

Unraveling the light of fireflies December 17th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Discoveries

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Energy

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Nanobiotechnology

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Biomimetic dew harvesters: Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers December 8th, 2014

Solar/Photovoltaic

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE