Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Origami: Not just for paper anymore--DNA, folded into complex shapes, could have major impact on nanotechnology

Mark Bathe, the Samuel A. Goldblith Assistant Professor of Applied Biology	
Photo: Dominick Reuter
Mark Bathe, the Samuel A. Goldblith Assistant Professor of Applied Biology
Photo: Dominick Reuter

Abstract:
While the primary job of DNA in cells is to carry genetic information from one generation to the next, some scientists also see the highly stable and programmable molecule as an ideal building material for nanoscale structures that could be used to deliver drugs, act as biosensors, perform artificial photosynthesis and more.

Origami: Not just for paper anymore--DNA, folded into complex shapes, could have major impact on nanotechnology

Cambridge, MA | Posted on April 27th, 2011

Trying to build DNA structures on a large scale was once considered unthinkable. But about five years ago, Caltech computational bioengineer Paul Rothemund laid out a new design strategy called DNA origami: the construction of two-dimensional shapes from a DNA strand folded over on itself and secured by short "staple" strands. Several years later, William Shih's lab at Harvard Medical School translated this concept to three dimensions, allowing design of complex curved and bent structures that opened new avenues for synthetic biological design at the nanoscale.

A major hurdle to these increasingly complex designs has been automation of the design process. Now a team at MIT, led by biological engineer Mark Bathe, has developed software that makes it easier to predict the three-dimensional shape that will result from a given DNA template. While the software doesn't fully automate the design process, it makes it considerably easier for designers to create complex 3-D structures, controlling their flexibility and potentially their folding stability.

"We ultimately seek a design tool where you can start with a picture of the complex three-dimensional shape of interest, and the algorithm searches for optimal sequence combinations," says Bathe, the Samuel A. Goldblith Assistant Professor of Applied Biology. "In order to make this technology for nanoassembly available to the broader community including biologists, chemists, and materials scientists without expertise in the DNA origami technique the computational tool needs to be fully automated, with a minimum of human input or intervention."

Bathe and his colleagues described their new software in the Feb. 25 issue of Nature Methods. In that paper, they also provide a primer on creating DNA origami with collaborator Hendrik Dietz at the Technische Universitaet Muenchen. "One bottleneck for making the technology more broadly useful is that only a small group of specialized researchers are trained in scaffolded DNA origami design," Bathe says.

DNA consists of a string of four nucleotide bases known as A, T, G and C, which make the molecule easy to program. According to nature's rules, A binds only with T, and G only with C. "With DNA, at the small scale, you can program these sequences to self-assemble and fold into a very specific final structure, with separate strands brought together to make larger-scale objects," Bathe says.

Rothemund's origami design strategy is based on the idea of getting a long strand of DNA to fold in two dimensions, as if laid on a flat surface. In his first paper outlining the method, he used a viral genome consisting of approximately 8,000 nucleotides to create 2-D stars, triangles and smiley faces.

That single strand of DNA serves as a "scaffold" for the rest of the structure. Hundreds of shorter strands, each about 20 to 40 bases in length, combine with the scaffold to hold it in its final, folded shape.

"DNA is in many ways better suited to self-assembly than proteins, whose physical properties are both difficult to control and sensitive to their environment," Bathe says.

Bathe's new software program interfaces with a software program from Shih's lab called caDNAno, which allows users to manually create scaffolded DNA origami from a two-dimensional layout. The new program, dubbed CanDo, takes caDNAno's 2-D blueprint and predicts the ultimate 3-D shape of the design. This resulting shape is often unintuitive, Bathe says, because DNA is a flexible object that twists, bends and stretches as it folds to form a complex 3-D shape.

Written by Anne Trafton, MIT News Office

####

For more information, please click here

Contacts:
Caroline McCall
MIT News Office
E:
T: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Nanomedicine

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Sensors

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Discoveries

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Announcements

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrows Intelligent Systems on GLOBALFOUNDRIES' FDX Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX and 12FDX Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Energy

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Nanobiotechnology

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Solar/Photovoltaic

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic