Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotools Designed for Surgical Recovery: Recent work published by Professor David Smith’s research group has reported new nano-systems which may eventually help patients recovering from surgery

Abstract:
There is no doubt that the skill of surgeons plays a remarkable role in transforming the lives of hospital patients - from seriously injured victims of road traffic accidents to the recipients of heart and lung transplants. However, without the use of a range of different chemical drugs, surgeons would not be able to operate. One important drug is heparin, which thins the blood and allows surgeons to operate without clotting taking place. However, once surgery is finished, it is essential to remove the heparin and allow clotting to occur so the patient can recover. This is currently done by giving the patient a second drug, protamine. However, because protamine is a natural product arising from shellfish, some patients exhibit serious allergic responses.

Nanotools Designed for Surgical Recovery: Recent work published by Professor David Smith’s research group has reported new nano-systems which may eventually help patients recovering from surgery

Heslington, UK | Posted on April 26th, 2011

In their recent work, published in Angewandte Chemie, the Smith group have developed synthetic molecules which are capable of binding heparin. These molecules are designed to self-assemble into nanometre-sized structures with similar dimensions to protamine and containing multiple heparin binding units. It was shown that these nanosystems could bind to heparin just as effectively as protamine. ‘Clearly there is lots of fundamental work still to be done before clinical application,' says Smith, ‘but we hope that this approach may eventually yield biocompatible and degradable heparin binders, which will help surgical recovery without any of the side effects which can be caused by protamine'.

####

For more information, please click here

Contacts:
Department of Chemistry
University of York, Heslington, York, YO10 5DD, UK
Tel: work 44 01904 322511
Fax: fax 44 01904 322516

Copyright © University of York

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic