Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Novel ash analysis validates volcano no-fly zones

Abstract:
Air safety authorities essentially had to fly blind when the ash cloud from Eyjafjallajökull caused them to close the airspace over Europe last year. Now a team of nanoscientists from Copenhagen have developed a way to provide the necessary information within hours.

Novel ash analysis validates volcano no-fly zones

Copenhagen, Denmark | Posted on April 26th, 2011

Planes were grounded all over Europe when the Eyjafjallajökull volcano erupted in Iceland last year. But no one knew if the no fly zone was really necessary. And the only way to find out would have been to fly a plane through the ash cloud - a potentially fatal experiment.

Now a team of researchers from the University of Copenhagen and the University of Iceland have developed a protocol for rapidly providing air traffic authorities with the data they need for deciding whether or not to ground planes next time ash threatens airspace safety.
Volcanic ash was indeed dangerous

A study by the teams of Professors Susan Stipp from the Nano-Science Centre of the University of Copenhagen and Sigurdur Gislason from the University of Iceland is reported this week in the internationally recognized journal PNAS (Proceedings of the National Academy of Science, USA).

Volcanic ash could crash planes if the particles are small enough to travel high and far, if they are sharp enough to sandblast the windows and bodies of airplanes, or if they melt inside jet engines. The ash from the Eyjafjallajökull eruption was dangerous on all counts, so the authorities certainly made the right decision in April 2010. That's one conclusion from the Copenhagen/Iceland paper but Professor Stipp thinks the team's most important contribution is a method for quickly assessing future ash.

"I was surprised to find nothing in the scientific literature or on the web about characterising ash to provide information for aviation authorities. So we decided to do something about it," explains Stipp.
10 million affected

Some 10 million travellers were affected by the ash plume, which cost an estimated two and a half billion Euros.

"Aviation authorities were sitting on a knife-edge at the centre of a huge dilemma. If they closed airspace unnecessarily, people, families, businesses and the economy would suffer, but if they allowed air travel, people and planes could be put at risk, perhaps with tragic consequences," says Professor Stipp.

So Susan Stipp phoned her colleague and friend in Reykjavik, Siggi Gislason and while the explosive eruptions were at their worst, he and a student donned protective clothing, collected ash as it fell and sent some samples to Denmark.

"In the Nano-Science Centre at the University of Copenhagen, we have analytical facilities and a research team that are unique in the world for characterising natural nanoparticles and their reaction with air, water and oil." explains Professor Susan Stipp.
Reliable answers in less than 24 hours

The newly developed protocol for assessing future ash can provide information for safety assessment in less than 24 hours. Within an hour of receiving the samples, scientists can tell how poisonous they are for the animals and people living closest to the eruption. Half a day enables them to predict the danger of sandblasting on aircraft, and assess the risk of fouling jet engines. Within a day they can tell the size of the particles, providing data for predicting where and how far the ash cloud will spread. Susan Stipp hopes that because of the analysis protocol, aviation authorities will not face such an impossible dilemma next time fine-grained ash threatens passenger safety.

"Some of the analytical instruments needed are standard equipment in Earth science departments and some are commonly used by materials scientists, so with our protocol, aviation authorities ought to be able to get fast, reliable answers," concludes Professor Stipp.

####

For more information, please click here

Contacts:
Professor Susan Stipp
Mobile: +45 28 75 02 02
Email:

Communications officer Jes Andersen
Mobile: +45 30 50 65 82
Email:

Copyright © University of Copenhagen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Discoveries

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Danish researchers behind vaccine breakthrough April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Announcements

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Research partnerships

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

XEI Scientific and the University of Southern California collaborate on the use of downstream plasma cleaning in sample preparation and publish a paper in ACS Photonics April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic