Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Simrit's Nanotechnology Surface Process Improves Seal Longevity, Abrasion Resistance

Abstract:
To better meet customer needs for more robust seals, Simrit has developed an advanced surface treatment process to improve seal function and service life. Simrit's Reduced Friction by Nanotechnology (RFN) method is one of the newest tools available for enhancing seal performance.

Simrit's Nanotechnology Surface Process Improves Seal Longevity, Abrasion Resistance

Plymouth, MI | Posted on April 25th, 2011

Sealing components made of elastomeric materials have inherently high surface energies (tackiness) and a high coefficient of friction (COF). Therefore, when an elastomeric seal makes contact with the mating component, the interface of the two surfaces can produce a "stiction" effect, which is detrimental when the contact is intermittent. For example, stiction has a significant impact on applications like bicycle shock absorbers, which need to have a low breakaway force for smooth shock function.

To prevent stiction, Simrit created the RFN process, which consists of applying its proprietary surface modification to rubber components to reduce COF. The transformed surface offers high abrasion resistance, low COF, resistance to aggressive fluids and improved long-term service. The RFN treatment is odorless, translucent in color and compatible with applications that require purity. Applications that require low stiction and long service life, such as valve sealing components and diaphragms, can greatly benefit from Simrit's RFN treatment.

"With nearly 100 years of sealing experience, developing technologies and processes that provide increased consistency and reliability for our customers is a top priority for Simrit," said David R. Monaco, president, Simrit. "Our pioneering RFN surface treatment has the ability to dramatically improve the longevity and function of elastomeric seals in a variety of applications, including designs that operate in extreme conditions."

RFN treated surfaces have consistently shown a 70 percent reduction in static COF, aggressive media resistance and lower torque and loading properties. Additionally, long-term exposure to fuel, ozone and wear have shown no increase in COF in treated surfaces, while non-treated surfaces exhibit an 80 to 100 percent increase in COF over time. Further, the RFN process doesn't alter the physical properties of the elastomer and enables the seal to remain flexible to withstand extremely low temperatures, as well as high forces, without cracking.

####

About Simrit Division of Freudenberg-NOK
Simrit is part of the Freudenberg and NOK Group Companies, which have total annual sales of more than $7 billion. The global Freudenberg and NOK Group offers an extensive portfolio of precision-manufactured products for the aerospace, appliance, automotive, marine, medical, off-highway equipment, recreational vehicle and renewable energy markets.

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Materials/Metamaterials

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

TUBALL nanotube-based concentrates recognised as the most innovative raw material for composites by JEC Group November 7th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Automotive/Transportation

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

GLOBALFOUNDRIES Introduces New Automotive Platform to Fuel Tomorrow’s Connected Car: AutoPro™ provides a full range of technologies and manufacturing services to help carmakers harness the power of silicon for a new era of ‘connected intelligence’ October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

Industrial

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project