Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Simrit's Nanotechnology Surface Process Improves Seal Longevity, Abrasion Resistance

Abstract:
To better meet customer needs for more robust seals, Simrit has developed an advanced surface treatment process to improve seal function and service life. Simrit's Reduced Friction by Nanotechnology (RFN) method is one of the newest tools available for enhancing seal performance.

Simrit's Nanotechnology Surface Process Improves Seal Longevity, Abrasion Resistance

Plymouth, MI | Posted on April 25th, 2011

Sealing components made of elastomeric materials have inherently high surface energies (tackiness) and a high coefficient of friction (COF). Therefore, when an elastomeric seal makes contact with the mating component, the interface of the two surfaces can produce a "stiction" effect, which is detrimental when the contact is intermittent. For example, stiction has a significant impact on applications like bicycle shock absorbers, which need to have a low breakaway force for smooth shock function.

To prevent stiction, Simrit created the RFN process, which consists of applying its proprietary surface modification to rubber components to reduce COF. The transformed surface offers high abrasion resistance, low COF, resistance to aggressive fluids and improved long-term service. The RFN treatment is odorless, translucent in color and compatible with applications that require purity. Applications that require low stiction and long service life, such as valve sealing components and diaphragms, can greatly benefit from Simrit's RFN treatment.

"With nearly 100 years of sealing experience, developing technologies and processes that provide increased consistency and reliability for our customers is a top priority for Simrit," said David R. Monaco, president, Simrit. "Our pioneering RFN surface treatment has the ability to dramatically improve the longevity and function of elastomeric seals in a variety of applications, including designs that operate in extreme conditions."

RFN treated surfaces have consistently shown a 70 percent reduction in static COF, aggressive media resistance and lower torque and loading properties. Additionally, long-term exposure to fuel, ozone and wear have shown no increase in COF in treated surfaces, while non-treated surfaces exhibit an 80 to 100 percent increase in COF over time. Further, the RFN process doesn't alter the physical properties of the elastomer and enables the seal to remain flexible to withstand extremely low temperatures, as well as high forces, without cracking.

####

About Simrit Division of Freudenberg-NOK
Simrit is part of the Freudenberg and NOK Group Companies, which have total annual sales of more than $7 billion. The global Freudenberg and NOK Group offers an extensive portfolio of precision-manufactured products for the aerospace, appliance, automotive, marine, medical, off-highway equipment, recreational vehicle and renewable energy markets.

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Industrial

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016

Model aids efforts to reduce cost of carbon nanostructures for industry, research April 5th, 2016

Molecular-scale ALD discovery could have industrial-sized impact: New atomic layer deposition technique reduces waste March 31st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic