Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers create functioning synapse using carbon nanotubes: Devices might be used in brain prostheses – or combined into massive network of synthetic neurons to create a synthetic brain

This image shows nanotubes used in synthetic synapse and apparatus used to create them.

Credit: USC Viterbi School of Engineering
This image shows nanotubes used in synthetic synapse and apparatus used to create them.

Credit: USC Viterbi School of Engineering

Abstract:
Engineering researchers at USC Viterbi have made a significant breakthrough in the use of nanotechnologies for the construction of a synthetic brain. They have built a carbon nanotube synapse circuit whose behavior in tests reproduces the function of a neuron input, the synapse, the a building block of the brain.

Researchers create functioning synapse using carbon nanotubes: Devices might be used in brain prostheses – or combined into massive network of synthetic neurons to create a synthetic brain

Los Angeles, CA | Posted on April 25th, 2011

The team, which was led by Professor Alice Parker and Professor Chongwu Zhou in the Ming Hsieh Department of Electrical Engineering, used an interdisciplinary approach combining circuit design with nanotechnology to address the complex problem of capturing brain function.

In a paper published in the proceedings of the Life Science Systems and Applications Workshop in April 2011, the Viterbi team detailed how they were able to use carbon nanotubes to create a synapse. Carbon nanotubes are molecular carbon structures that are extremely small, with a diameter a million times smaller than a pencil point. These nanotubes can be used in electronic circuits, acting as metallic conductors or semiconductors.

"This is a necessary first step in the process," said Parker, who began the complex project of looking at the possibility of developing a synthetic brain in 2006. "We wanted to answer the question: Can you build a circuit that would act like a neuron? The next step is even more complex. How can we build structures out of these circuits that mimic the neuron, and eventually the function of the brain, which has 100 billion neurons and 10,000 synapses?"

Parker emphasized that the fabricated synapse is simplified, the actual development of a synthetic brain is decades away, and she said the next hurdle for the research centers on reproducing brain plasticity in the circuits. The human brain continually produces new neurons and adapts throughout life, and creating this process through analog circuits will be a monumental task, according to Parker. She believes the ongoing research of understanding the process of human intelligence could have long-term implications for everything from developing prosthetic nanotechnology that would heal traumatic brain injuries to developing intelligent, safe cars that would protect drivers in bold new ways.

For Jonathan Joshi, a USC Viterbi Ph.D. student who is a co-author of the paper, the interdisciplinary approach to the problem was key to the initial progress. Joshi said that working with Zhou and his group of nanotechnology researchers provided the ideal dynamic of circuit technology and nanotechnology.

"The interdisciplinary approach is the only approach that will lead to a solution. We need more than one type of engineer working on this solution," said Joshi. "We should constantly be in search of new technologies to solve this problem."

The research is supported by the National Science Foundation and the Women in Science and Engineering program at USC.

####

For more information, please click here

Contacts:
Eric Mankin

213-821-1887

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Brain-Computer Interfaces

Nano memory cell can mimic the brain’s long-term memory May 14th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

On the frontiers of cyborg science August 10th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Nanotubes/Buckyballs/Fullerenes

Cellulose from wood can be printed in 3-D June 17th, 2015

Researchers grind nanotubes to get nanoribbons: Rice-led experiments demonstrate solid-state carbon nanotube 'templates' June 15th, 2015

Environmental Issues to Hamper Growth of Global Nanocomposites Market June 4th, 2015

Carbon Nanotubes (CNT) Market Trends, Segments And Forecasts To 2022: Grand View Research, Inc June 1st, 2015

Discoveries

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project