Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers create functioning synapse using carbon nanotubes: Devices might be used in brain prostheses – or combined into massive network of synthetic neurons to create a synthetic brain

This image shows nanotubes used in synthetic synapse and apparatus used to create them.

Credit: USC Viterbi School of Engineering
This image shows nanotubes used in synthetic synapse and apparatus used to create them.

Credit: USC Viterbi School of Engineering

Abstract:
Engineering researchers at USC Viterbi have made a significant breakthrough in the use of nanotechnologies for the construction of a synthetic brain. They have built a carbon nanotube synapse circuit whose behavior in tests reproduces the function of a neuron input, the synapse, the a building block of the brain.

Researchers create functioning synapse using carbon nanotubes: Devices might be used in brain prostheses – or combined into massive network of synthetic neurons to create a synthetic brain

Los Angeles, CA | Posted on April 25th, 2011

The team, which was led by Professor Alice Parker and Professor Chongwu Zhou in the Ming Hsieh Department of Electrical Engineering, used an interdisciplinary approach combining circuit design with nanotechnology to address the complex problem of capturing brain function.

In a paper published in the proceedings of the Life Science Systems and Applications Workshop in April 2011, the Viterbi team detailed how they were able to use carbon nanotubes to create a synapse. Carbon nanotubes are molecular carbon structures that are extremely small, with a diameter a million times smaller than a pencil point. These nanotubes can be used in electronic circuits, acting as metallic conductors or semiconductors.

"This is a necessary first step in the process," said Parker, who began the complex project of looking at the possibility of developing a synthetic brain in 2006. "We wanted to answer the question: Can you build a circuit that would act like a neuron? The next step is even more complex. How can we build structures out of these circuits that mimic the neuron, and eventually the function of the brain, which has 100 billion neurons and 10,000 synapses?"

Parker emphasized that the fabricated synapse is simplified, the actual development of a synthetic brain is decades away, and she said the next hurdle for the research centers on reproducing brain plasticity in the circuits. The human brain continually produces new neurons and adapts throughout life, and creating this process through analog circuits will be a monumental task, according to Parker. She believes the ongoing research of understanding the process of human intelligence could have long-term implications for everything from developing prosthetic nanotechnology that would heal traumatic brain injuries to developing intelligent, safe cars that would protect drivers in bold new ways.

For Jonathan Joshi, a USC Viterbi Ph.D. student who is a co-author of the paper, the interdisciplinary approach to the problem was key to the initial progress. Joshi said that working with Zhou and his group of nanotechnology researchers provided the ideal dynamic of circuit technology and nanotechnology.

"The interdisciplinary approach is the only approach that will lead to a solution. We need more than one type of engineer working on this solution," said Joshi. "We should constantly be in search of new technologies to solve this problem."

The research is supported by the National Science Foundation and the Women in Science and Engineering program at USC.

####

For more information, please click here

Contacts:
Eric Mankin

213-821-1887

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Brain-Computer Interfaces

Are We Quantum Computers? Led by UCSB’s Matthew Fisher, an international collaboration of researchers will investigate the brain’s potential for quantum computation March 27th, 2018

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging February 13th, 2018

A firefly's flash inspires new nanolaser light July 18th, 2017

Gold & Graphene Make Brain Probes More Sensitive Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/05/tech/graphene-gold-brain-probe/ May 3rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Plasmons triggered in nanotube quantum wells: Rice, Tokyo Metropolitan scientists create platform for unique near-infrared devices March 16th, 2018

Big steps toward control of production of tiny building blocks March 9th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Discoveries

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Announcements

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Arbe Robotics Selects GLOBALFOUNDRIES for its High-Resolution Imaging Radar to Enable Safety for Autonomous Cars: Arbe Robotics’ proprietary chipset leverages GF’s 22FDX® technology to deliver industry’s first real-time 4D imaging radar for level 4 and 5 autonomous driving April 26th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project