Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > “Graphene oxide nanoribbon actuators for MEMS and other electrolyte-free motion systems”

Abstract:
Graphene oxide nanoribbons (GOr), obtained by chemically unzipping multi-walled carbon nanotubes, were assembled into macroscopic mats by vacuum filtration. These mats exhibited up to 1.6% reversible contraction when electrically heated at ambient conditions. The experimentally derived work capacity of the mats was about 40 J/kg, which is similar to that of natural muscle. It was limited by the mechanical strength of mats and can be increased upon optimization of their preparation conditions. X-ray diffraction measurements indicated reversible changes in the interplanar spacing of GOr layers during heating. These dimensional changes can be associated with reversible adsorption/desorption of water molecules between GOr layers and used in thermally-driven micro-electromechanical systems (MEMS), micromachines, various opto-mechanic and micro-fluidic devices. Similar to shape memory alloy actuators, GOr mats can be deployed for electrolyte-free artificial muscle applications. The work reported in Chemical Physics Letters, 505 (2011) 31 extends the list of properties available from graphene oxide.

“Graphene oxide nanoribbon actuators for MEMS and other electrolyte-free motion systems”

Dallas, TX | Posted on April 25th, 2011

####

For more information, please click here

Contacts:
Mikhail E Kozlov

Copyright © University of Texas Dallas

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

"Thermal actuation of graphene oxide nanoribbon mats" in Chemical Physics Letters.

Related News Press

Graphene

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

MEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Ziptronix and EV Group Demonstrate Submicron Accuracies for Wafer-to-Wafer Hybrid Bonding: Enables Fine-Pitch Connections for 3D Applications, Including Image Sensors, Memory and 3D SoCs May 27th, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE