Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Berkeley Lab Scientists Shed Light on Mystery of Raman Signal Enhancement



By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to 'slosh' onto a gold surface (left), while others do not (right). The vibrations that cause this 'sloshing' behavior yield a stronger SERS signal.

By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to 'slosh' onto a gold surface (left), while others do not (right). The vibrations that cause this 'sloshing' behavior yield a stronger SERS signal.

Abstract:
The mystery behind a detection method that can sense the presence of individual molecules-useful for researchers analyzing artwork and anthrax alike-has been unraveled by scientists with the Lawrence Berkeley National Laboratory (Berkeley Lab).

Berkeley Lab Scientists Shed Light on Mystery of Raman Signal Enhancement

Berkeley, CA | Posted on April 22nd, 2011

Raman spectroscopy is an analytic technique commonly used to gain insight into bonding configuration and symmetry in molecules. This technique uses light scattered by vibrations from atoms to provide scientists with a unique signal, or fingerprint, for a given molecule. However, for nanoscale materials and interfaces, this signal is far too weak to be detected.

Surface-enhanced Raman spectroscopy, or SERS, is a surface-sensitive technique capitalizing on the enhancement of a Raman signal from a molecule placed on a rough metal surface. This surface behaves like an array of antennas, amplifying a signal billions of times or more and making it easier to detect. In recent years, this technique has been used to identify faded pigments in watercolor artist Winslow Homer's colorless skies, and proposed as a nanoscale sensor in biological warfare. However, the chemical aspect of this enhancement has baffled researchers for decades.

"The role of surface chemistry in SERS has been unexplained for more than thirty years," says Alexey Zayak, a post-doctoral scholar working with Jeff Neaton, Director of the Theory of Nanostructured Materials Facility at Berkeley Lab's Molecular Foundry, a U.S. Department of Energy (DOE) national nanoscience user facility. "Many theories have been proposed for why it occurs, but the chemical contributions to SERS were never established enough to draw a simple, systematic picture of this behavior. Working with experimentalists and with a new theoretical approach, we were able to isolate the chemical contributions."

Previous efforts to understand the change in Raman signal of molecules attached to a metal surface have struggled to separate chemical contributions to enhancement. In this study, Zayak and Neaton performed quantum-mechanical calculations to show changes in Raman signal intensity caused by the chemical binding of benzene thiol, a ring-like organic molecule, onto a gold surface.

By homing in on how electrons are distributed around an atom, the team showed how vibrations from this molecule cause electrical charge to "slosh" from benzene thiol to the gold and trigger signal enhancement. Pinpointing this change in behavior provides a simple, straightforward understanding of chemical contributions to SERS.

"We wanted to find a model to isolate how this fingerprint of a molecule changes or becomes enhanced as it interacts with a surface. Here, we did a rigorous, controlled set of calculations that were validated by quantitative agreement with experiment. Our calculations provide a complementary dimension to experimental results, and helped us identify which of the existing models best explained both our calculations and the experimental data," says Jeff Neaton, who is also acting deputy director for science in Berkeley Lab's Materials Science Division. "The beauty of this work is our ability to quantitatively compare calculations with experimental results. This opened the door for a simple model that led to an unprecedented understanding of this elusive phenomenon."

Now, using this model, other researchers can interpret chemical contributions to SERS in their own experimental data. What's more, Zayak adds, this new understanding extends beyond Raman spectroscopy to "basically any situation where atomic vibrations are triggered at an interface between a molecule and a metal," such as in catalysis and the flow of electrical charge or heat through nanoscale interfaces and molecular junctions.

A paper reporting this research titled, "Chemical Raman enhancement of organic adsorbates on metal surfaces," appears in Physical Review Letters and is available to subscribers online. Co-authoring the paper with Zayak and Neaton were Y.S. Hu, Hyuck Choo, Jeff Bokor, Stefano Cabrini and Jim Schuck.

Portions of this work at the Molecular Foundry and the National Energy Research Scientific Computing Cluster were supported by DOE's Office of Science.

####

About Berkeley Lab
The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the Molecular Foundry, visit the Website at:

Related News Press

News and information

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Videos/Movies

Wood filter removes toxic dye from water April 21st, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Imaging

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Discoveries

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Wood filter removes toxic dye from water April 21st, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Announcements

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Tools

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

MSP Corporation Announces a New Breakthrough in Monodisperse Droplet Generation April 19th, 2017

Researchers Succeed in Localizing Individual Atoms in Nanostructures Using First Cryo-Transfer LEAP Atom Probe April 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project