Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Imagine: Material That If Scratched, You Can Quickly and Easily Fix Yourself, With Light Not Heat

Schematic of optically healing polymers. The specially designed polymer molecules that make up the solid item can be disassembled by the UV light so that they flow and fill in the cracks. When the light is turned off, the molecules reassemble themselves and the filled cracks become rigid again.

Credit: Zina Deretsky, National Science Foundation, after Burnworth et al., Nature, April 21, 2011
Schematic of optically healing polymers. The specially designed polymer molecules that make up the solid item can be disassembled by the UV light so that they flow and fill in the cracks. When the light is turned off, the molecules reassemble themselves and the filled cracks become rigid again.

Credit: Zina Deretsky, National Science Foundation, after Burnworth et al., Nature, April 21, 2011

Abstract:
Imagine you're driving your own new car--or a rental car--and you need to park in a commercial garage. Maybe you're going to work, visiting a mall or attending an event at a sports stadium, and you're in a rush. Limited and small available spots and concrete pillars make parking a challenge. And it happens that day: you slightly misjudge a corner and you can hear the squeal as you scratch the side of your car--small scratches, but large anticipated repair costs.

Imagine: Material That If Scratched, You Can Quickly and Easily Fix Yourself, With Light Not Heat

Arlington, VA | Posted on April 21st, 2011

Now imagine that that you can repair these unsightly scratches yourself--quickly, easily and inexpensively--or that you can go through a car wash that can detect these and other more minor scratches and fix them as the car goes through the washing garage. Fantasy. Not exactly. Not anymore. Not according to a new discovery detailed in the April 21 issue of the journal Nature, and depicted in a short video interview and simulation.

A team of researchers in the United States and Switzerland have developed a polymer-based material that can heal itself with the help of a widely used type of lighting. Called "metallo-supramolecular polymers," the material is capable of becoming a supple liquid that fills crevasses and gaps left by scrapes and scuffs when placed under ultraviolet light for less than a minute and then resolidifying.

"This is ingenious and transformative materials research," said Andrew Lovinger, polymers program director in NSF's Division of Materials Research. "It demonstrates the versatility and power of novel polymeric materials to address technological issues and serve society while creating broadly applicable scientific concepts."

The team involves researchers at Case Western Reserve University in Cleveland, Ohio, led by Stuart J. Rowan; the Adolphe Merkle Institute of the University of Fribourg in Switzerland, led by Christoph Weder; and the Army Research Laboratory at Aberdeen Proving Ground in Maryland, led by Rick Beyer.

The scientists envision widespread uses in the not-so-distant future for re-healable materials like theirs, primarily as coatings for consumer goods such as automobiles, floors and furniture. While their polymers are not yet ready for commercial use, they acknowledge, they now have proved that the concept works. And with that, what happens next is up to the market place. Necessity, the mother of invention, will expand the possibilities for commercial applications.

"These polymers have a Napoleon Complex," explains lead author Stuart Rowan, a professor of macromolecular engineering and science and director of the Institute for Advanced Materials at Case Western Reserve University. "In reality they're pretty small but are designed to behave like they're big by taking advantage of specific weak molecular interactions."

"Our study is really a fundamental research study," said Christoph Weder, a professor of polymer chemistry and materials and the director of the Adolphe Merkle Institute. "We tried to create materials that have a unique property matrix, that have unique functionality and that in principle could be very useful."

Specifically, the new materials were created by a mechanism known as supramolecular assembly. Unlike conventional polymers, which consist of long, chain-like molecules with thousands of atoms, these materials are composed of smaller molecules, which were assembled into longer, polymer-like chains using metal ions as "molecular glue" to create the metallo-supramolecular polymers.

While these metallo-supramolecular polymers behave in many ways like normal polymers, when irradiated with intense ultraviolet light the assembled structures become temporarily unglued. This transforms the originally solid material into a liquid that flows easily. When the light is switched off, the material re-assembles and solidifies again; its original properties are restored.

Using lamps such as those dentists use to cure fillings, the researchers repaired scratches in their polymers. Wherever they waved the light beam, the scratches filled up and disappeared, much like a cut that heals and leaves no trace on skin. While skin's healing process can be represented by time-lapse photography that spans several days or weeks, self-healing polymers heal in just seconds.

In addition, unlike the human body, durability of the material does not seem to be compromised by repeated injuries. Tests showed the researchers could repeatedly scratch and heal their materials in the same location.

Further, while heat has provided a means to heal materials for a long time, the use of light provides distinct advantages, says Mark Burnworth, a graduate student at Case Western Reserve University. "By using light, we have more control as it allows us to target only the defect and leave the rest of the material untouched."

The researchers systematically investigated several new polymers to find an optimal combination of mechanical properties and healing ability. They found that metal ions that drive the assembly process via weaker chemical interactions serve best as the light-switchable molecular glue.

They also found the materials that assembled in the most orderly microstructures had the best mechanical properties. But, healing efficiency improved as structural order decreased.

"Understanding these relationships is critical for allowing us improve the lifetime of coatings tailored to specific applications, like windows in abrasive environments" Beyer said.

And what's next? According to Rowan, "One of our next steps is to use the concepts we have shown here to design a coating that would be more applicable in an industrial setting."

Film director and art curator Aaron Rose was at least partially right when he said, "In the right light, at the right time, everything is extraordinary." Self-healing polymers certainly are extraordinary.

The research was funded by the Army Research Office of the U.S. Army Research Laboratory, the U.S. National Science Foundation and the Adolphe Merkle Foundation.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Lisa-Joy Zgorski
NSF
(703) 292-8311


Kevin L. Mayhood
Case Western Reserve University
(216) 368-4442


Program Contacts
Andrew J. Lovinger
NSF
(703) 292-4933


Principal Investigators
Stuart Rowan
Case Western Reserve University
(216) 368-4242


Christoph Weder
Adolphe Merkle Institute
41-(0)26-300 94 65

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Listen to an audio transcript featuring Chris Weder of the University of Fribourg and NSF's Andrew Lovinger.

View a video about the self-healing polymer.

NSF's Division of Materials Research:

Case Western University:

The Adolphe Merkle Institute (AMI):

The Army Research Laboratory at Aberdeen:

The Rowan Group in the Institute for Advanced Materials, Department of Macromolecular Science and Engineering:

Related News Press

News and information

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Videos/Movies

High Precision, High Stability XYZ Microscope Stages, with Capacitive Feedback August 18th, 2015

Engineers identify how to keep surfaces dry underwater: Research team is first to identify surface 'roughness' required to achieve amazing feat August 18th, 2015

Flexible, biodegradable device can generate power from touch (video) August 12th, 2015

Tantalizing discovery may boost memory technology: Rice University scientists make tantalum oxide practical for high-density devices August 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Materials/Metamaterials

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa August 25th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Announcements

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Military

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

Automotive/Transportation

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Lehigh University-DuPont tribology research seeks to reduce wear and waste August 13th, 2015

Flexible dielectric polymer can stand the heat August 6th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic