Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Physicist Seeks Nanomaterials with Rationally Designed Properties

Doctoral student Benjamin Gray, left, and Jak Chakhalian in the laboratory with a unique state-of-the-art piece of equipment built last summer to fabricate atomic layers of complex oxides.
Doctoral student Benjamin Gray, left, and Jak Chakhalian in the laboratory with a unique state-of-the-art piece of equipment built last summer to fabricate atomic layers of complex oxides.

Abstract:
A University of Arkansas physicist has received the largest award granted to an individual researcher from the Army Research Laboratory to search for a novel class of nanomaterials with rationally designed properties.

Physicist Seeks Nanomaterials with Rationally Designed Properties

Fayetteville, AR | Posted on April 21st, 2011

Physicist Jak Chakhalian seeks to create a new class of materials - so-called topological insulators combined with magnetic and superconductivity properties within just a few atomic layers. From the practical perspective, having all of these properties in one material could lead to building never-before realized topological quantum computers, which could be used to break complex encryption codes and compute things beyond the power of today's supercomputers.

"If you have that, it will revolutionize the way we think about electrons moving in conventional insulators and metals even at the nanoscale," Chakhalian said. He has funding from the Army Research Laboratory of $1.2 million over five years.

Recently Chakhalian, associate professor of physics in the J. William Fulbright College of Arts and Sciences, and colleagues found a novel way to "look" at atomic orbitals and found that they change substantially at the interface between a ferromagnet and a high-temperature superconductor. This finding opens up a new way of designing nanoscale superconducting materials. It also fundamentally changes scientific convention, which suggests that only electron spin and atomic charge - not atomic orbitals - influence the properties of nanostructures. It also has profound implications for interfaces between many other complex oxide materials.

This research was cited by Science magazine as one of the top 10 research breakthroughs of 2007.
Until recently, researchers only recognized three fundamental types of materials: metals such as iron and gold, insulators and semiconductors. In 2006, theoretical physicists suggested that another completely unknown class of insulating materials might exist. This class, called topological insulators, would not conduct electricity inside the crystal but permits the perfect conduction on the surface within a single atomic layer. This happens because geometry protects the surface electrons. In 2007, scientists looked at the alloy bismuth telluride and found the properties that this theory predicted. They had discovered a new class of material.

"On the inside, bismuth telluride is an insulator, but on the surface, within one atomic layer, it's a perfect conductor," Chakhalian said. "It will conduct within the single atomic layer no matter how disordered the crystal on the inside. This is a whole new class of materials very similar to the Nobel prize-winning material, graphene, with many other interesting twists."
Chakhalian wants to create a topological insulator as a nanostructure with magnetic and superconducting properties in a few atomic layers at the interface. He admits that his goal is ambitious, but he likens the research to going to the moon in the 1960s - no one thought it could be done, but it happened.

"We need scientists to be courageous, to jump into the unknown," he said. Chakhalian will use the grant from the Army Research Laboratory to build new equipment to create and test atomically thin superlattices by combining novel materials and using the interface as a tool.

Chakhalian is a member of the University of Arkansas Institute for Nanoscience and Engineering. He holds the Charles E. and Clydene Scharlau Endowed Professorship in Chemistry.

####

For more information, please click here

Contacts:
Jak Chakhalian
associate professor of physics
J. William Fulbright College of Arts and Sciences
479-575-4313


Melissa Lutz Blouin
director of science and research communications
University Relations
479-575-5555

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Laboratories

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

News and information

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Physics

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Chip Technology

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Announcements

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Military

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Smart hydrogel coating creates 'stick-slip' control of capillary action July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project