Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicist Seeks Nanomaterials with Rationally Designed Properties

Doctoral student Benjamin Gray, left, and Jak Chakhalian in the laboratory with a unique state-of-the-art piece of equipment built last summer to fabricate atomic layers of complex oxides.
Doctoral student Benjamin Gray, left, and Jak Chakhalian in the laboratory with a unique state-of-the-art piece of equipment built last summer to fabricate atomic layers of complex oxides.

Abstract:
A University of Arkansas physicist has received the largest award granted to an individual researcher from the Army Research Laboratory to search for a novel class of nanomaterials with rationally designed properties.

Physicist Seeks Nanomaterials with Rationally Designed Properties

Fayetteville, AR | Posted on April 21st, 2011

Physicist Jak Chakhalian seeks to create a new class of materials - so-called topological insulators combined with magnetic and superconductivity properties within just a few atomic layers. From the practical perspective, having all of these properties in one material could lead to building never-before realized topological quantum computers, which could be used to break complex encryption codes and compute things beyond the power of today's supercomputers.

"If you have that, it will revolutionize the way we think about electrons moving in conventional insulators and metals even at the nanoscale," Chakhalian said. He has funding from the Army Research Laboratory of $1.2 million over five years.

Recently Chakhalian, associate professor of physics in the J. William Fulbright College of Arts and Sciences, and colleagues found a novel way to "look" at atomic orbitals and found that they change substantially at the interface between a ferromagnet and a high-temperature superconductor. This finding opens up a new way of designing nanoscale superconducting materials. It also fundamentally changes scientific convention, which suggests that only electron spin and atomic charge - not atomic orbitals - influence the properties of nanostructures. It also has profound implications for interfaces between many other complex oxide materials.

This research was cited by Science magazine as one of the top 10 research breakthroughs of 2007.
Until recently, researchers only recognized three fundamental types of materials: metals such as iron and gold, insulators and semiconductors. In 2006, theoretical physicists suggested that another completely unknown class of insulating materials might exist. This class, called topological insulators, would not conduct electricity inside the crystal but permits the perfect conduction on the surface within a single atomic layer. This happens because geometry protects the surface electrons. In 2007, scientists looked at the alloy bismuth telluride and found the properties that this theory predicted. They had discovered a new class of material.

"On the inside, bismuth telluride is an insulator, but on the surface, within one atomic layer, it's a perfect conductor," Chakhalian said. "It will conduct within the single atomic layer no matter how disordered the crystal on the inside. This is a whole new class of materials very similar to the Nobel prize-winning material, graphene, with many other interesting twists."
Chakhalian wants to create a topological insulator as a nanostructure with magnetic and superconducting properties in a few atomic layers at the interface. He admits that his goal is ambitious, but he likens the research to going to the moon in the 1960s - no one thought it could be done, but it happened.

"We need scientists to be courageous, to jump into the unknown," he said. Chakhalian will use the grant from the Army Research Laboratory to build new equipment to create and test atomically thin superlattices by combining novel materials and using the interface as a tool.

Chakhalian is a member of the University of Arkansas Institute for Nanoscience and Engineering. He holds the Charles E. and Clydene Scharlau Endowed Professorship in Chemistry.

####

For more information, please click here

Contacts:
Jak Chakhalian
associate professor of physics
J. William Fulbright College of Arts and Sciences
479-575-4313


Melissa Lutz Blouin
director of science and research communications
University Relations
479-575-5555

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Laboratories

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Building nanomaterials for next-generation computing: Scientists recently developed a blueprint to fabricate new nanoheterostructures using 2D materials June 1st, 2018

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more May 31st, 2018

Physics

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Chip Technology

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Nanometrics Updates Time of Webcast at Stifel 2018 Cross Sector Insight Conference June 12th, 2018

Quantum Computing

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Deeper understanding of quantum chaos may be the key to quantum computers May 16th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Military

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project