Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Limit to nanotechnology mass-production?

Abstract:
A leading nanotechnology scientist has raised questions over a billion dollar industry by boldly claiming that there is a limit to how small nanotechnology materials can be mass produced.

Limit to nanotechnology mass-production?

UK | Posted on April 20th, 2011

In a paper published today, Thursday, 21 April, in IOP Publishing's journal Nanotechnology, Professor Mike Kelly, Centre for Advanced Photonics and Electronics, University of Cambridge, stated that you cannot mass produce structures with a diameter of three nanometres or less using a top-down approach.

This statement raises a major question concerning the billions of dollars that are poured into nanotechnology each year in the hope that the latest technology developed in the lab can make the transition to a manufactured product on the market.

Nanotechnology is built on the ability to control and manipulate matter at the atomic and molecular level and has far reaching applications including the delivery of drugs into the body, increasing the efficiency of solar panels and improving methods of food packaging.

The overall goal when entering nanotechnologies into the market is low-cost, high-volume manufacturability, but at the same time, the materials' properties must be highly reproducible within a pre-specified limit, which Kelly states cannot happen below the 3nm limit when trying to make arrays.

The top-down approach to manufacturing, which Kelly states is limited, uses external tools to cut and shape large materials to contain many smaller features. Its alternative, the bottom-up approach, involves piecing together small units, usually molecules, to construct whole materials - much like a jigsaw puzzle - however this process is too unpredictable for defect - free mass production of arrays.

Kelly used statistical evaluation of vertical nanopillars - that have been suggested for uses in sensors and displays - as an example to demonstrate his theory. He states that the proof comes in two stages. The first is due to the fact that when materials are mass produced on such a small scale there will be a lot of variation in the size of different components.

As a result of this variation, the properties of the material will vary to an extent where the material cannot function to full capacity within an array.

Professor Kelly says, "If I am wrong, and a counterexample to my theorem is provided, many scientists would be more secure in their continued working, and that is good for science.

"If more work is devoted to the hard problem of understanding just what can be manufactured and how, at the expense of more studies of things that cannot be manufactured under the conditions of the present theorem, then that too is good for science and for technology."

####

For more information, please click here

Contacts:
Joe Winters

44-207-470-4815

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

From Thursday 21 April, the journal paper can be found at:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Physics

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Scientists use heat to create transformations between skyrmions and antiskyrmions January 12th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project