Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > PSE Success Story: Molecular “Stencils” Open Up New Possibilities for Solar Energy

This diagram shows the scheme for patterning inorganic nanoscale features onto the substrate by applying SIS onto a self-assembled PS-b-PMMA block copolymer film template.
This diagram shows the scheme for patterning inorganic nanoscale features onto the substrate by applying SIS onto a self-assembled PS-b-PMMA block copolymer film template.

Abstract:
Self-assembled nanomaterials provide a promising approach to fabricating more efficient and less expensive solar energy systems.

PSE Success Story: Molecular “Stencils” Open Up New Possibilities for Solar Energy

Argonne, IL | Posted on April 19th, 2011

The Challenge

Nanofabrication techniques such as electron beam lithography and block copolymer self-assembly can be effective, but in many cases these approaches are either too costly or do not yield materials with the desired combination of nanostructure and physical properties.

The Solution

Researchers from Argonne's Center for Nanoscale Materials and Energy Systems Division have developed a new technique known as sequential infiltration synthesis (SIS), which involves the growth of inorganic materials within polymeric templates. In one embodiment, SIS relies on the creation of self assembled nanoscale chemical domains into which other materials can be grown. A film composed of block copolymers acts as a template for the creation of a highly-tunable patterned material.

SIS is an extension of atomic layer deposition (ALD). But instead of just layering two-dimensional films of different nanomaterials on top of one another, SIS allows scientists to construct materials that have much more complex geometries.

The Results
SIS enables the creation of materials that weren't possible with ALD or block copolymers alone. By providing the ability to control the geometry of a material as well as its chemical composition, SIS opens the door to new nanomaterials that could potentially find their way into future generations of solar cells, catalysts, and photonic crystals. Argonne researchers are continuing work to optimize this methodology for specific applications and to test its limits.

"Our solar energy future does not have a one-size-fits-all solution," said Argonne chemist Jeff Elam. "We need to investigate the problem from many different angles with many different materials, and SIS will give researchers many new routes of attack."

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Seth Darling


Jeff Elam

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Laboratories

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Self Assembly

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Discoveries

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Materials/Metamaterials

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

A golden thread through the labyrinth of nanomaterials December 12th, 2014

Announcements

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Energy

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Solar/Photovoltaic

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Light propagation in solar cells made visible December 5th, 2014

Printing/Lithography/Inkjet/Inks

Nanoshaping method points to future manufacturing technology December 11th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE