Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > PSE Success Story: Molecular “Stencils” Open Up New Possibilities for Solar Energy

This diagram shows the scheme for patterning inorganic nanoscale features onto the substrate by applying SIS onto a self-assembled PS-b-PMMA block copolymer film template.
This diagram shows the scheme for patterning inorganic nanoscale features onto the substrate by applying SIS onto a self-assembled PS-b-PMMA block copolymer film template.

Abstract:
Self-assembled nanomaterials provide a promising approach to fabricating more efficient and less expensive solar energy systems.

PSE Success Story: Molecular “Stencils” Open Up New Possibilities for Solar Energy

Argonne, IL | Posted on April 19th, 2011

The Challenge

Nanofabrication techniques such as electron beam lithography and block copolymer self-assembly can be effective, but in many cases these approaches are either too costly or do not yield materials with the desired combination of nanostructure and physical properties.

The Solution

Researchers from Argonne's Center for Nanoscale Materials and Energy Systems Division have developed a new technique known as sequential infiltration synthesis (SIS), which involves the growth of inorganic materials within polymeric templates. In one embodiment, SIS relies on the creation of self assembled nanoscale chemical domains into which other materials can be grown. A film composed of block copolymers acts as a template for the creation of a highly-tunable patterned material.

SIS is an extension of atomic layer deposition (ALD). But instead of just layering two-dimensional films of different nanomaterials on top of one another, SIS allows scientists to construct materials that have much more complex geometries.

The Results
SIS enables the creation of materials that weren't possible with ALD or block copolymers alone. By providing the ability to control the geometry of a material as well as its chemical composition, SIS opens the door to new nanomaterials that could potentially find their way into future generations of solar cells, catalysts, and photonic crystals. Argonne researchers are continuing work to optimize this methodology for specific applications and to test its limits.

"Our solar energy future does not have a one-size-fits-all solution," said Argonne chemist Jeff Elam. "We need to investigate the problem from many different angles with many different materials, and SIS will give researchers many new routes of attack."

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Seth Darling


Jeff Elam

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Laboratories

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

Researchers synthesize material for efficient plasmonic devices in mid-infrared range February 16th, 2015

New design tool for metamaterials: Berkeley Lab study shows how to predict metamaterial nonlinear optical properties February 10th, 2015

X-ray pulses uncover free nanoparticles for the first time in 3-D 'Super microscope' reveals unexpected variety of shapes February 4th, 2015

Self Assembly

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Revealed: How bacteria drill into our cells and kill them December 2nd, 2014

Live Images from the Nano-cosmos: Researchers watch layers of football molecules grow November 5th, 2014

Discoveries

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Materials/Metamaterials

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Announcements

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

Printing/Lithography/Inkjet/Inks

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

3-D printing with custom molecules creates low-cost mechanical sensor February 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE