Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Kid on the Plasmonic Block: Berkeley Lab Researchers Find Plasmonic Resonances in Semiconductor Nanocrystals

Transmission electron micrographs and (inset) showing the electron diffraction patterns of three quantum dot samples with average size of (a) 2.4 nanometers (b) 3.6 nm, and (c) 5.8 nm. (Image courtesy of Alivisatos group)
Transmission electron micrographs and (inset) showing the electron diffraction patterns of three quantum dot samples with average size of (a) 2.4 nanometers (b) 3.6 nm, and (c) 5.8 nm. (Image courtesy of Alivisatos group)

Abstract:
With its promise of superfast computers and ultrapowerful optical microscopes among the many possibilities, plasmonics has become one of the hottest fields in high-technology. However, to date plasmonic properties have been limited to nanostructures that feature interfaces between noble metals and dielectrics. Now, researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that plasmonic properties can also be achieved in the semiconductor nanocrystals known as quantum dots. This discovery should make the field of plasmonics even hotter.

New Kid on the Plasmonic Block: Berkeley Lab Researchers Find Plasmonic Resonances in Semiconductor Nanocrystals

Berkeley, CA | Posted on April 19th, 2011

"We have demonstrated well-defined localized surface plasmon resonances arising from p-type carriers in vacancy-doped semiconductor quantum dots that should allow for plasmonic sensing and manipulation of solid-state processes in single nanocrystals," says Berkeley Lab director Paul Alivisatos, a nanochemistry authority who led this research. "Our doped semiconductor quantum dots also open up the possibility of strongly coupling photonic and electronic properties, with implications for light harvesting, nonlinear optics, and quantum information processing."

Alivisatos is the corresponding author of a paper in the journal Nature Materials titled "Localized surface plasmon resonances arising from free carriers in doped quantum dots." Co-authoring the paper were Joseph Luther and Prashant Jain, along with Trevor Ewers.

The term "plasmonics" describes a phenomenon in which the confinement of light in dimensions smaller than the wavelength of photons in free space make it possible to match the different length-scales associated with photonics and electronics in a single nanoscale device. Scientists believe that through plasmonics it should be possible to design computer chip interconnects that are able to move much larger amounts of data much faster than today's chips. It should also be possible to create microscope lenses that can resolve nanoscale objects with visible light, a new generation of highly efficient light-emitting diodes, and supersensitive chemical and biological detectors. There is even evidence that plasmonic materials can be used to bend light around an object, thereby rendering that object invisible.

The plasmonic phenomenon was discovered in nanostructures at the interfaces between a noble metal, such as gold or silver, and a dielectric, such as air or glass. Directing an electromagnetic field at such an interface generates electronic surface waves that roll through the conduction electrons on a metal, like ripples spreading across the surface of a pond that has been plunked with a stone. Just as the energy in an electromagnetic field is carried in a quantized particle-like unit called a photon, the energy in such an electronic surface wave is carried in a quantized particle-like unit called a plasmon. The key to plasmonic properties is when the oscillation frequency between the plasmons and the incident photons matches, a phenomenon known as localized surface plasmon resonance (LSPR). Conventional scientific wisdom has held that LSPRs require a metal nanostructure , where the conduction electrons are not strongly attached to individual atoms or molecules. This has proved not to be the case as Prashant Jain, a member of the Alivisatos research group and one of the lead authors of the Nature Materials paper, explains.

"Our study represents a paradigm shift from metal nanoplasmonics as we've shown that, in principle, any nanostructure can exhibit LSPRs so long as the interface has an appreciable number of free charge carriers, either electrons or holes," Jain says. "By demonstrating LSPRs in doped quantum dots, we've extended the range of candidate materials for plasmonics to include semiconductors, and we've also merged the field of plasmonic nanostructures, which exhibit tunable photonic properties, with the field of quantum dots, which exhibit tunable electronic properties."

Jain and his co-authors made their quantum dots from the semiconductor copper sulfide, a material that is known to support numerous copper-deficient stoichiometries. Initially, the copper sulfide nanocrystals were synthesized using a common hot injection method. While this yielded nanocrystals that were intrinsically self-doped with p-type charge carriers, there was no control over the amount of charge vacancies or carriers.

"We were able to overcome this limitation by using a room-temperature ion exchange method to synthesize the copper sulfide nanocrystals," Jain says. "This freezes the nanocrystals into a relatively vacancy-free state, which we can then dope in a controlled manner using common chemical oxidants."

By introducing enough free electrical charge carriers via dopants and vacancies, Jain and his colleagues were able to achieve LSPRs in the near-infrared range of the electromagnetic spectrum. The extension of plasmonics to include semiconductors as well as metals offers a number of significant advantages, as Jain explains.

"Unlike a metal, the concentration of free charge carriers in a semiconductor can be actively controlled by doping, temperature, and/or phase transitions," he says. "Therefore, the frequency and intensity of LSPRs in dopable quantum dots can be dynamically tuned. The LSPRs of a metal, on the other hand, once engineered through a choice of nanostructure parameters, such as shape and size, is permanently locked-in."

Jain envisions quantum dots as being integrated into a variety of future film and chip-based photonic devices that can be actively switched or controlled, and also being applied to such optical applications as in vivo imaging. In addition, the strong coupling that is possible between photonic and electronic modes in such doped quantum dots holds exciting potential for applications in solar photovoltaics and artificial photosynthesis

"In photovoltaic and artificial photosynthetic systems, light needs to be absorbed and channeled to generate energetic electrons and holes, which can then be used to make electricity or fuel," Jain says. "To be efficient, it is highly desirable that such systems exhibit an enhanced interaction of light with excitons. This is what a doped quantum dot with an LSPR mode could achieve."

The potential for strongly coupled electronic and photonic modes in doped quantum dots arises from the fact that semiconductor quantum dots allow for quantized electronic excitations (excitons), while LSPRs serve to strongly localize or confine light of specific frequencies within the quantum dot. The result is an enhanced exciton-light interaction. Since the LSPR frequency can be controlled by changing the doping level, and excitons can be tuned by quantum confinement, it should be possible to engineer doped quantum dots for harvesting the richest frequencies of light in the solar spectrum.

Quantum dot plasmonics also hold intriguing possibilities for future quantum communication and computation devices.

"The use of single photons, in the form of quantized plasmons, would allow quantum systems to send information at nearly the speed of light, compared with the electron speed and resistance in classical systems," Jain says. "Doped quantum dots by providing strongly coupled quantized excitons and LSPRs and within the same nanostructure could serve as a source of single plasmons."

Jain and others in Alivsatos' research group are now investigating the potential of doped quantum dots made from other semiconductors, such as copper selenide and germanium telluride, which also display tunable plasmonic or photonic resonances. Germanium telluride is of particular interest because it has phase change properties that are useful for memory storage devices.

"A long term goal is to generalize plasmonic phenomena to all doped quantum dots, whether heavily self-doped or extrinsically doped with relatively few impurities or vacancies," Jain says.

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the research of Paul Alivisatos, visit the Website at:

For more information about the research of Prashant Jain, visit the Website at:

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Physics

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Laboratories

Self-assembled nanotextures create antireflective surface on silicon solar cells: Nanostructured surface textures-with shapes inspired by the structure of moths' eyes-prevent the reflection of light off silicon, improving conversion of sunlight to electricity January 21st, 2015

NREL Scientist Brian Gregg Named AAAS Fellow: Gregg honored for distinguished contributions to the field of organic solar photoconversion January 20th, 2015

Self-destructive Effects of Magnetically-doped Ferromagnetic Topological Insulators: Magnetic atoms that create exotic surface property also sow the seeds of its destruction January 19th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Chip Technology

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

New method to generate arbitrary optical pulses January 21st, 2015

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Quantum Computing

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Improved interface for a quantum internet January 16th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Toward quantum chips: Packing single-photon detectors on an optical chip is a crucial step toward quantum-computational circuits January 9th, 2015

Discoveries

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Quantum Dots/Rods

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Shining a light on quantum dots measurement January 15th, 2015

Carbon Nanotubes Increase Efficiency of Solar Cells January 12th, 2015

TCL 55” Quantum Dot TV with Color IQ™ Optics Debuts at CES 2015: TVs with OLED-quality color at an affordable price coming soon to the US and Europe January 5th, 2015

Quantum nanoscience

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Two or one splashing? It's different! Physicist at the University of Bonn observe light-matter interaction with two atoms for the first time January 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE