Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Specialized invisible needles make us see surfaces at the nanoscale

Abstract:
We expect our electronic devices, such as mobile phones and computers, to work properly and become even better with time and seldom think about the amazing innovations making this possible. Scientists are developing a cantilever array that can have an important impact on synthesis and analysis of nanostructures that can improve the quality control of mobile phone camera lenses.

Specialized invisible needles make us see surfaces at the nanoscale

Italy | Posted on April 19th, 2011

A cantilever is a very thin single needle currently used for quality control at the nanoscale, but to improve and speed up the process scientists are developing an array of needles, a cantilever array, functioning simultaneously. Except for finding defects on mircochips this array could benefit the optical industry by improving the quality control of mobile phone camera lenses.

Researchers use Scanning Proximity Probes (SPP) to analyze the quality of electronic devices by scanning their components' surfaces at the atomic level. Presently, single probes are used and the scanning rate is very slow. Each probe, a cantilever consisting of a specialized silicon needle only a few microns wide which is invisible to the naked eye, vibrates when passing over a surface.These vibrations are transformed into electric signals and then interpreted by a computer that creates a three-dimensional scan. In this way the researchers can see how a certain surface looks in detail. Without these kinds of sensitive nanotools it would be impossible to see if all nanosized components were in the right place and the quality would therefore be poorer.The limitation to the scanning area's size and the scanning speed has been the SPP nanotools' mechanical resonance frequencies.

To increase the scanning speed and analyze larger surfaces researchers from Germany, Poland, Sweden, the UK, Slovakia, Bulgaria, Switzerland and France have joined forces in the European Commission funded project PRONANO - Proceedings of the Integrated Project on Massively Parallel Intelligent Cantilever Probe Platforms for Nanoscale Analysis and Synthesis.They are developing a cantilever array for parallel operation that can have an important impact on synthesis and analysis of nanostructures.

Cantilevers are not only used for surface analysis but for nanolithography, critical dimensions control and data storage. The PRONANO cantilever array could also benefit areas such as the optical industry, where it has shown to be able to point out defects in certain types of lenses ten times faster than the technology used today, which could increase output from this industry.

When this cantilever array reaches the market it can improve performance and lower the price of computers and mobile phones, as well as improve quality control of lenses for cameras in mobile phones. In addition, when defective products are found and discarded earlier in the production process, it could mean this new cantilever array becomes a much more environmentally friendly alternative. However, this is dependent on for example the production procedure of the cantilever array.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Discoveries

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Announcements

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Efficiency of Nanodrug Containing Antibiotics in Treatment of Infectious Diseases Evaluated August 31st, 2015

Tools

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Nanometrics to Participate in the Citi 2015 Global Technology Conference August 26th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic