Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Boosting Memory Chips

Abstract:
Moore's law predicts that the number of transistors on a silicon chip will double approximately every two years. Thanks to nano technology a similar acceleration is observed in data storage capability of memory chips

Boosting Memory Chips

Italy | Posted on April 19th, 2011

In each generation cycle memory chips get smaller and less expensive, but can hold more data. They are used in USB memory sticks, personal computers, video consoles and many other electronic devices. Further advances in electronics' technology rely now on the development of new materials and in particular on their manufacture in nano scale thin films. Atomic Layer Deposition (ALD) is a way to manufacture metal oxide materials layer by layer on the nano scale.

Within the EU research project REALISE synthetic chemists, materials scientists, electronic engineers and commercial project partners from all over Europe developed together an optimized process for nano scale deposition for the semiconductor manufacturing.

"Improvements in memory chips are now only possible by bringing in new materials that can be laid down with the high quality needed", says project coordinator Simon Elliott from Tyndall National Institute in Cork, Ireland.

The new materials are rare earth oxides: A fine powder that functions as an electronic insulator. It will isolate the electrical information on computer chips. The aim is to achieve a high dielectric material, with a so called high k-value, which would enable a large capacitance.

ASM Microchemistry in Helsinki, Finland, the chemical manufacturer partner in the project, has developed reactors that are able to deposit the rare earth oxides onto silicon wafers in a semi conductor line. The new process allows the scientists to put down these particular high-k dielectric films with a very high control and a very good quality and to do all that under clean room conditions.

Particle checks, electrical tests and measuring of the uniformity of the thickness have also been done with the processed wafers. The results are promising. All the elements are in place for the semi conductor industry to take on this new material when they are ready and produce the memory chip of the future.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chip Technology

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Memory Technology

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

New material with ferroelectricity and ferromagnetism may lead to better computer memory December 21st, 2016

Characterization of magnetic nanovortices simplified December 21st, 2016

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

Announcements

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project