Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Different approaches to increase the storage capacity of flash memories

Abstract:
There is a big demand for flash memories that can store even more data. However, it is now necessary to use new materials and technologies to improve flash memories and researchers worldwide are trying different approaches to achieve this aim. The project REALISE has developed a material and a processing technique now ready for industrial application

Different approaches to increase the storage capacity of flash memories

Italy | Posted on April 19th, 2011

Researchers are investigating different ways to increase the storage capacity of the computer storage chips called flash memories. Within the EU-funded project REALISE (Rare earth oxide atomic layer deposition for innovations in electronics), coordinated by Tyndall National Institute in Ireland, scientists are developing flash memories with improved storage capacity. To achieve this improvement new materials have to be introduced.

In REALISE low-cost rare earth oxides form very good electronic insulators, which are reducing the interference between adjacent memory cells. The scientists have made an insulator, containing zirconium oxide and a smaller amount of lanthanum oxide, named LZO. This structure will respond heavily to electric fields. Through electrical tests the scientists found that nanometer-thin films of LZO with a designed structure showed a three-fold improvement, in insulating properties of importance, compared to alumina. Alumina was earlier the best material in this regard. This result means that it is possible to manufacture electronic devices three times smaller than before and the working lifetime is doubled. The researchers use a process called ALD, atomic layer deposition, to put the rare earth oxides atom by atom onto the flash memories and integrate them properly.

Another way towards better memory chips having longer lifetimes and faster write speed than today's flash memories is investigated by scientists from University of Wisconsin-Madison, Nanjing University, University of Michigan, Penn State University and Cornell University. They are improving ferroelectric materials' performance through a system that, in a spontaneous manner, forms nanosized spirals of the electric polarization at controllable intervals, which could give the polarization switching natural budding sites. This would decrease the power necessary to flip each bit. Researchers at the Chung Hua University, the Industrial Technology Research Institute and the National Chiao Tung University in Taiwan have instead worked on highly thermal stable iridium nanocrystals embedded in SiO2 matrix, which they suggest could improve the performance of flash memories.

We will soon be able to store much more on our flash memories if everything goes according to plans. The REALISE project's researchers anticipate that if a large flash memory producer uses LZO for making flash memories better, these devices may be on the market within a few years.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Chip Technology

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project