Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Different approaches to increase the storage capacity of flash memories

Abstract:
There is a big demand for flash memories that can store even more data. However, it is now necessary to use new materials and technologies to improve flash memories and researchers worldwide are trying different approaches to achieve this aim. The project REALISE has developed a material and a processing technique now ready for industrial application

Different approaches to increase the storage capacity of flash memories

Italy | Posted on April 19th, 2011

Researchers are investigating different ways to increase the storage capacity of the computer storage chips called flash memories. Within the EU-funded project REALISE (Rare earth oxide atomic layer deposition for innovations in electronics), coordinated by Tyndall National Institute in Ireland, scientists are developing flash memories with improved storage capacity. To achieve this improvement new materials have to be introduced.

In REALISE low-cost rare earth oxides form very good electronic insulators, which are reducing the interference between adjacent memory cells. The scientists have made an insulator, containing zirconium oxide and a smaller amount of lanthanum oxide, named LZO. This structure will respond heavily to electric fields. Through electrical tests the scientists found that nanometer-thin films of LZO with a designed structure showed a three-fold improvement, in insulating properties of importance, compared to alumina. Alumina was earlier the best material in this regard. This result means that it is possible to manufacture electronic devices three times smaller than before and the working lifetime is doubled. The researchers use a process called ALD, atomic layer deposition, to put the rare earth oxides atom by atom onto the flash memories and integrate them properly.

Another way towards better memory chips having longer lifetimes and faster write speed than today's flash memories is investigated by scientists from University of Wisconsin-Madison, Nanjing University, University of Michigan, Penn State University and Cornell University. They are improving ferroelectric materials' performance through a system that, in a spontaneous manner, forms nanosized spirals of the electric polarization at controllable intervals, which could give the polarization switching natural budding sites. This would decrease the power necessary to flip each bit. Researchers at the Chung Hua University, the Industrial Technology Research Institute and the National Chiao Tung University in Taiwan have instead worked on highly thermal stable iridium nanocrystals embedded in SiO2 matrix, which they suggest could improve the performance of flash memories.

We will soon be able to store much more on our flash memories if everything goes according to plans. The REALISE project's researchers anticipate that if a large flash memory producer uses LZO for making flash memories better, these devices may be on the market within a few years.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Announcements

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Park Systems Announces Innovations in Bio Cell Analysis with the Launch of Park NX-Bio, the only 3-in-1 Imaging Nanoscale Tool Available for Life Science Researchers January 29th, 2015

2015 Nanonics Image Contest January 29th, 2015

Iranian Scientists Use MOFs to Eliminate Dye Pollutants January 29th, 2015

Alliances/Partnerships/Distributorships

The Original Frameless Shower Doors Installs DFI's FuseCube™ to Offer Hydrophobic Protective Coating as a Standard Feature: First DFI FuseCube™ Installed on the East Coast to Enable Key Differentiator for the Original Frameless Shower Doors January 29th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Research partnerships

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Promising use of nanodiamonds in delivering cancer drug to kill cancer stem cells: NUS study shows that delivery of Epirubicin by nanodiamonds resulted in a normally lethal dosage of Epirubicin becoming a safe and effective dosage for treatment of liver cancer January 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE