Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Different approaches to increase the storage capacity of flash memories

Abstract:
There is a big demand for flash memories that can store even more data. However, it is now necessary to use new materials and technologies to improve flash memories and researchers worldwide are trying different approaches to achieve this aim. The project REALISE has developed a material and a processing technique now ready for industrial application

Different approaches to increase the storage capacity of flash memories

Italy | Posted on April 19th, 2011

Researchers are investigating different ways to increase the storage capacity of the computer storage chips called flash memories. Within the EU-funded project REALISE (Rare earth oxide atomic layer deposition for innovations in electronics), coordinated by Tyndall National Institute in Ireland, scientists are developing flash memories with improved storage capacity. To achieve this improvement new materials have to be introduced.

In REALISE low-cost rare earth oxides form very good electronic insulators, which are reducing the interference between adjacent memory cells. The scientists have made an insulator, containing zirconium oxide and a smaller amount of lanthanum oxide, named LZO. This structure will respond heavily to electric fields. Through electrical tests the scientists found that nanometer-thin films of LZO with a designed structure showed a three-fold improvement, in insulating properties of importance, compared to alumina. Alumina was earlier the best material in this regard. This result means that it is possible to manufacture electronic devices three times smaller than before and the working lifetime is doubled. The researchers use a process called ALD, atomic layer deposition, to put the rare earth oxides atom by atom onto the flash memories and integrate them properly.

Another way towards better memory chips having longer lifetimes and faster write speed than today's flash memories is investigated by scientists from University of Wisconsin-Madison, Nanjing University, University of Michigan, Penn State University and Cornell University. They are improving ferroelectric materials' performance through a system that, in a spontaneous manner, forms nanosized spirals of the electric polarization at controllable intervals, which could give the polarization switching natural budding sites. This would decrease the power necessary to flip each bit. Researchers at the Chung Hua University, the Industrial Technology Research Institute and the National Chiao Tung University in Taiwan have instead worked on highly thermal stable iridium nanocrystals embedded in SiO2 matrix, which they suggest could improve the performance of flash memories.

We will soon be able to store much more on our flash memories if everything goes according to plans. The REALISE project's researchers anticipate that if a large flash memory producer uses LZO for making flash memories better, these devices may be on the market within a few years.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Chip Technology

‘Small’ transformation yields big changes September 16th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Announcements

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Alliances/Partnerships/Distributorships

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Handheld scanner could make brain tumor removal more complete, reducing recurrence September 3rd, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

JPK expands availability of instrumentation in the USA – appointing new distributors – launched a new web site to support the US market - AFM now available to US users August 26th, 2014

Research partnerships

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE