Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Different approaches to increase the storage capacity of flash memories

Abstract:
There is a big demand for flash memories that can store even more data. However, it is now necessary to use new materials and technologies to improve flash memories and researchers worldwide are trying different approaches to achieve this aim. The project REALISE has developed a material and a processing technique now ready for industrial application

Different approaches to increase the storage capacity of flash memories

Italy | Posted on April 19th, 2011

Researchers are investigating different ways to increase the storage capacity of the computer storage chips called flash memories. Within the EU-funded project REALISE (Rare earth oxide atomic layer deposition for innovations in electronics), coordinated by Tyndall National Institute in Ireland, scientists are developing flash memories with improved storage capacity. To achieve this improvement new materials have to be introduced.

In REALISE low-cost rare earth oxides form very good electronic insulators, which are reducing the interference between adjacent memory cells. The scientists have made an insulator, containing zirconium oxide and a smaller amount of lanthanum oxide, named LZO. This structure will respond heavily to electric fields. Through electrical tests the scientists found that nanometer-thin films of LZO with a designed structure showed a three-fold improvement, in insulating properties of importance, compared to alumina. Alumina was earlier the best material in this regard. This result means that it is possible to manufacture electronic devices three times smaller than before and the working lifetime is doubled. The researchers use a process called ALD, atomic layer deposition, to put the rare earth oxides atom by atom onto the flash memories and integrate them properly.

Another way towards better memory chips having longer lifetimes and faster write speed than today's flash memories is investigated by scientists from University of Wisconsin-Madison, Nanjing University, University of Michigan, Penn State University and Cornell University. They are improving ferroelectric materials' performance through a system that, in a spontaneous manner, forms nanosized spirals of the electric polarization at controllable intervals, which could give the polarization switching natural budding sites. This would decrease the power necessary to flip each bit. Researchers at the Chung Hua University, the Industrial Technology Research Institute and the National Chiao Tung University in Taiwan have instead worked on highly thermal stable iridium nanocrystals embedded in SiO2 matrix, which they suggest could improve the performance of flash memories.

We will soon be able to store much more on our flash memories if everything goes according to plans. The REALISE project's researchers anticipate that if a large flash memory producer uses LZO for making flash memories better, these devices may be on the market within a few years.

####

For more information, please click here

Contacts:
Elisabeth Schmid
Phone: + 39 02 700 25 71
Fax: + 39 02 700 25 40
E-mail:

Copyright © youris.com

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Chip Technology

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

Memory Technology

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Announcements

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Alliances/Trade associations/Partnerships/Distributorships

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

SEMI and MSIG Join Together in Strategic Association Partnership: MEMS & Sensors Industry Group Brings New MEMS and Sensors Community to SEMI to Increase Combined Member Value September 15th, 2016

Leti and Oberthur Technologies Partner to Explore New Solutions in Fast-growing Digital Era September 12th, 2016

Synopsys Joins GLOBALFOUNDRIES’ FDXcelerator Partner Program to Enable Innovative Designs Using the FD-SOI Process: Program Gives Synopsys Access to GLOBALFOUNDRIES’ FDX Portfolio and Provides Customers with Tools that Support the Differentiated Features of FD-SOI September 8th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic