Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atomic-level crystal gazing: Revelation of the crystallization mechanism that enables fast writing of data to DVDs shows potential for quicker data storage in the future

Figure 1: Pulses of light alter the atomic bonds (red) in the material AIST, enabling quick storage and deletion of data.

© 2011 Masaki Takata
Figure 1: Pulses of light alter the atomic bonds (red) in the material AIST, enabling quick storage and deletion of data.

© 2011 Masaki Takata

Abstract:
Some 300 exabytes (3 × 1020 bytes) of information were stored in electronic media—magnetic disks and tapes or optical disks—throughout the world by 2007. Yet, the demand for electronic storage grows daily, driving an ever-increasing need to pack data into smaller volumes in quicker time. By studying how laser pulses alter the atomic structure of data-storage materials, a research team in Japan has uncovered a fundamental mechanism that could aid in the design of even faster information storage in the future1. The finding was published by Masaki Takata from the RIKEN SPring-8 Center, Harima, Shinji Kohara from the Japan Synchrotron Radiation Research Institute/SPring-8, Noboru Yamada from Panasonic Corporation and a team of scientists from Japan, Germany and Finland.

Atomic-level crystal gazing: Revelation of the crystallization mechanism that enables fast writing of data to DVDs shows potential for quicker data storage in the future

Japan | Posted on April 16th, 2011

Rewritable memory, such as the random-access memory found in computers or on DVDs, is based on a phase change in specific types of materials in which the atoms change from one stable arrangement to another. Pulses of laser light can induce a phase change, a process known as ‘writing,' and the material's phase can be identified by ‘reading' its signature optical properties.

To provide the first full understanding of the atomic structure of one such phase-change material, AgInSbTe (AIST)—often used in rewritable DVDs—Takata and his colleagues combined state-of-the-art materials-analysis techniques and theoretical modeling. A pulse of light can change AIST from an amorphous state, in which the atoms are disordered, into a crystalline phase in which the atoms are form an ordered-lattice structure. This process of crystallization happens in just a few tens of nanoseconds: the faster the crystallization, the faster data can be written and erased. No-one understood, however, why phase changes in AIST were so fast.

The team's analyses and modeling showed that AIST crystallizes in a different way to other commercially available phase-change materials. They found that crystallization of AIST is a simple process: the laser light excites the bonding electrons and causes them to move. A central atom of antimony (Sb) switches between one long (amorphous) and one short (crystalline) bond without any bond breaking (Fig. 1). "We hope to verify this bond-interchange model in the near future," says Takata. "Crystallization is the storage-rate-limiting process in all phase-change materials, and an atomistic understanding of it is essential."

The researchers also discovered that the absence of cavities within the crystal structure contributes to the faster writing speeds on AIST. This contrasts starkly with the alternative material germanium antimony telluride in which 10% of lattice sites in are empty.

The corresponding author for this highlight is based at the Structural Materials Science Laboratory, RIKEN SPring-8 Center

####

For more information, please click here

Copyright © Riken Research

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

article - Matsunaga, T., Akola, J., Kohara, S., Honma, T., Kobayashi, K., Ikenaga, E., Jones, R.O., Yamada, N., Takata, M. & Kojima, R. From local structure to nanosecond recrystallization dynamics in AgInSbTe phase-change materials. Nature Materials 10, 129–134 (2011).

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project