Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Empa researchers use electron beams for chemical reactions: Nanostructures stabilise lasers

The principle of the local deposition process which is induced with a focussed electron beam (in short, FEBIP): molecules from a gas-injection system are deposited on the sample surface in a reversible manner. The focussed electron beam dissociates adsorbed gas molecules. The resulting non-volatile compounds remain permanently on the sample.
The principle of the local deposition process which is induced with a focussed electron beam (in short, FEBIP): molecules from a gas-injection system are deposited on the sample surface in a reversible manner. The focussed electron beam dissociates adsorbed gas molecules. The resulting non-volatile compounds remain permanently on the sample.

Abstract:
Electron microscopes use focussed electron beams to make extremely small objects visible. By combining the instrument with a gas-injection system material samples can be manipulated and surface structures measuring only nanometres across can be "written". Empa researchers, together with scientists from EPFL, used this method to improve lasers.

Empa researchers use electron beams for chemical reactions: Nanostructures stabilise lasers

Switzerland | Posted on April 15th, 2011

The vertical cavity surface emitting laser (VCSEL) is a semiconductor laser which is often used in data transmission for short-distance links like Gigabit Ethernet. These lasers are very popular in telecommunications because they consume little energy and can be simply fabricated in volumes of many tens of thousands on a single wafer. However, these VCSELs can exhibit one weakness: Because of the cylindrical structure in which the lasers are built up on the wafer, the polarisation of the emitted light can sometimes change during operation. Polarisation is a property of certain waves, such as light waves, and it describes the direction of oscillation. A stable polarisation is necessary in order to reduce transmission errors and to use VCSELs in future silicon photonics.

The team led by Empa researcher Ivo Utke, together with scientists from the Laboratory of Physics of Nanostructures at EPFL, could provide assistance by using a method called FEBIP (focussed electron beam induced processing). "We've written flat grating structures on the VCSELs with an electron beam," says Utke in describing their solution, "and the gratings were effective in stabilising the polarisation." The study has recently been published in the scientific journal "Nanoscale" as an advanced online publication.

Small, minimally invasive, direct

FEBIP is suitable for prototyping nanocomponents, in order to solve specific questions and problems in applied nanoelectronics, nanophotonics and nanobiology. Suitable gas molecules are injected close to a sample which is already in the microscope's vacuum chamber. These adsorb on the sample in a reversible manner. The focussed electron beam, which normally serves to make objects visible, now instead induces chemical reactions of the adsorbed gas molecules, but only at the spot where the beam strikes the surface. The resulting non-volatile molecular fragments then remain permanently on the sample while the volatile fragments are removed by the vacuum system. "With the help of a precisely positioned electron beam, it's possible to remove or apply surface structures with nanometre precision and in virtually any desired three-dimensional shapes," explains Utke.

"FEBIP could soon become a true nanofabrication platform for rapid prototyping of nanostructures in a minimally invasive way, without necessitating the large investment of a clean room."

Book reference

"Nanofabrication using focused ion and electron beams: principles and applications", Editors I. Utke, S. Moshkalev, P. Russels, Oxford Series in Nanomanufacturing. N.Y., Oxford University Press (Nov 2011,), ISBN 9780199734214

####

About Empa
Empa is an interdisciplinary research and services institution for material sciences and technology development within the ETH Domain. Empa’s research and development activities are oriented to meeting the requirements of industry and the needs of our society, and link together applications-oriented research and the practical implementation of new ideas, science and industry, and science and society.

For more information, please click here

Contacts:
* Dr. Ivo Utke
Laboratory for Mechanics of Materials and Nanostructures
Phone +41 33 228 29 57


Redaktion / Medienkontakte

* Beatrice Huber
Communications
Phone +41 58 765 47 33

Copyright © Empa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Polarisation stabilisation of vertical cavity surface emitting lasers by minimally invasive focused electron beam triggered chemistry”, I. Utke, M. Jenke, C. Roeling, P. H. Thiesen, V. Iakovlev, A. Syrbu, A. Mereuta, A. Caliman, E. Kapon, Nanoscale

Related News Press

News and information

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Chemistry

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Imaging

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Deben reports on a new publication from scientists at La Trobe University in Australia where their CT500 stage is used in micro scanning tomography experiments to better understand ceramic matrix composites under load November 29th, 2017

Laboratories

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Announcements

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Tools

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Deben reports on a new publication from scientists at La Trobe University in Australia where their CT500 stage is used in micro scanning tomography experiments to better understand ceramic matrix composites under load November 29th, 2017

Photonics/Optics/Lasers

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project