Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Putting a fuel cell 'in your pocket'

Image: the core-shell particle (palladium atoms on a silver nanoparticle).
Image: the core-shell particle (palladium atoms on a silver nanoparticle).

Abstract:
Technology using catalysts which make hydrogen from formic acid could eventually replace lithium batteries and power a host of mobile devices.

Edman Tsang of Oxford University's Department of Chemistry and colleagues are developing new catalysts which can produce hydrogen at room temperature without the need for solvents or additives.

Putting a fuel cell 'in your pocket'

Oxford, UK | Posted on April 15th, 2011

Their initial results, reported in a recent paper in Nature Nanotechnology, are promising and suggest that a hydrogen fuel cell in your pocket might not be that far away.

The new approach involves placing a single atomic layer of palladium atoms onto silver nanoparticles. ‘The structural and electronic effects from the underlying silver greatly enhance the catalytic properties of palladium, giving impressive activity for the conversion of formic acid to hydrogen and carbon dioxide at room temperature,' Edman told us.

He explains that the storage and handling of organic liquids, such as formic acid, is much easier and safer than storing hydrogen. The catalysts would enable the production of hydrogen from liquid fuel stored in a disposable or recycled cartridge, creating miniature fuel cells to power everything from mobile phones to laptops.

Another advantage of the new technology is that the gas stream generated from the reaction is mainly composed of hydrogen and carbon dioxide but virtually free from catalyst-poisoning carbon monoxide; removing the need for clean-up processes and extending the life of the fuel cells.

The chemists have worked closely with George Smith, Paul Bagot and co-workers at Oxford University's Department of Materials to characterise the catalysts using atom probe tomography. The underlying technology is the subject of a recent Isis Innovation patent application.

‘There are lots of hurdles before you can get a real device, but we are looking at the possibility of using this new technology to replace lithium battery technology with an alternative which has a longer lifespan and has less impact on the environment,' explains Edman.

Professor Edman Tsang is based at Oxford University's Department of Chemistry.

####

About University of Oxford
Oxford is the oldest university in the English-speaking world, and a leader in learning, teaching and research.

For more information, please click here

Contacts:
telephone:44 01865 280528
fax:44 01865 280535
email:

Copyright © University of Oxford

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Chemistry

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Fuel Cells

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project