Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Plasma nanoscience needed for green energy revolution

Abstract:
A step change in research relating to plasma nanoscience is needed for the world to overcome the challenge of sufficient energy creation and storage, says a leading scientist from CSIRO Materials Science and Engineering and the University of Sydney, Australia.

Plasma nanoscience needed for green energy revolution

UK | Posted on April 13th, 2011

Professor Kostya (Ken) Ostrikov of the Plasma Nanoscience Centre Australia, CSIRO Materials Science and Engineering, has highlighted, in IOP Publishing's Journal of Physics D: Applied Physics, the unique potential of plasma nanoscience to control energy and matter at fundamental levels to produce cost-effective, environmentally and human health friendly nanoscale materials for applications in virtually any area of human activity.

Professor Ostrikov is a pioneer in the field of plasma nanoscience, and was awarded the Australian Future Fellowship (2011) of the Australian Research Council, Walter Boas Medal of the Australian Institute of Physics (2010), Pawsey Medal of the Australian Academy of Sciences (2008), and CEO Science Leader Fellowship and Award of CSIRO (2008) on top of gaining seven other prestigious fellowships and eight honorary and visiting professorships in six different countries.

He said: "We can find the best, most suitable plasmas and processes for virtually any application-specific nanomaterials using plasma nanoscience knowledge.

"The terms 'best' and 'most-suitable' have many dimensions including quality, yield, cost, environment and human friendliness, and most recently, energy efficiency."

Plasma nanoscience involves the use of plasma - an ionised gas at temperatures from just a few to tens of thousands Kelvin - as a tool to create and process very small (nano) materials for use in energy conversion, electronics, IT, health care, and numerous other applications that are critical for a sustainable future.

In particular, Ostrikov points out the ability of plasma to synthesise carbon nanotubes - one of the most exciting materials in modern physics, with extraordinary properties arising from their size, dimension, and structure, capable of revolutionising the way energy is produced, transferred and stored.

Until recently, the unpredictable nature of plasma caused some scientists to question its ability to control energy and matter in order to construct nanomaterials, however Ostrikov draws on existing research to provide evidence that it can be controlled down to fundamental levels leading to cost-effective and environmentally friendly processes.

Compared to existing methods of nanomaterials production, Ostrikov states that plasma can offer a simple, cheaper, faster, and more energy efficient way of moving "from controlled complexity to practical simplicity" and has encouraged researchers to grasp the opportunities that present themselves in this field.

####

For more information, please click here

Contacts:
Joe Winters

44-020-747-04815

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Environment

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

New catalyst could dramatically cut methane pollution from millions of engines: Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas. July 21st, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project