Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Plasma nanoscience needed for green energy revolution

Abstract:
A step change in research relating to plasma nanoscience is needed for the world to overcome the challenge of sufficient energy creation and storage, says a leading scientist from CSIRO Materials Science and Engineering and the University of Sydney, Australia.

Plasma nanoscience needed for green energy revolution

UK | Posted on April 13th, 2011

Professor Kostya (Ken) Ostrikov of the Plasma Nanoscience Centre Australia, CSIRO Materials Science and Engineering, has highlighted, in IOP Publishing's Journal of Physics D: Applied Physics, the unique potential of plasma nanoscience to control energy and matter at fundamental levels to produce cost-effective, environmentally and human health friendly nanoscale materials for applications in virtually any area of human activity.

Professor Ostrikov is a pioneer in the field of plasma nanoscience, and was awarded the Australian Future Fellowship (2011) of the Australian Research Council, Walter Boas Medal of the Australian Institute of Physics (2010), Pawsey Medal of the Australian Academy of Sciences (2008), and CEO Science Leader Fellowship and Award of CSIRO (2008) on top of gaining seven other prestigious fellowships and eight honorary and visiting professorships in six different countries.

He said: "We can find the best, most suitable plasmas and processes for virtually any application-specific nanomaterials using plasma nanoscience knowledge.

"The terms 'best' and 'most-suitable' have many dimensions including quality, yield, cost, environment and human friendliness, and most recently, energy efficiency."

Plasma nanoscience involves the use of plasma - an ionised gas at temperatures from just a few to tens of thousands Kelvin - as a tool to create and process very small (nano) materials for use in energy conversion, electronics, IT, health care, and numerous other applications that are critical for a sustainable future.

In particular, Ostrikov points out the ability of plasma to synthesise carbon nanotubes - one of the most exciting materials in modern physics, with extraordinary properties arising from their size, dimension, and structure, capable of revolutionising the way energy is produced, transferred and stored.

Until recently, the unpredictable nature of plasma caused some scientists to question its ability to control energy and matter in order to construct nanomaterials, however Ostrikov draws on existing research to provide evidence that it can be controlled down to fundamental levels leading to cost-effective and environmentally friendly processes.

Compared to existing methods of nanomaterials production, Ostrikov states that plasma can offer a simple, cheaper, faster, and more energy efficient way of moving "from controlled complexity to practical simplicity" and has encouraged researchers to grasp the opportunities that present themselves in this field.

####

For more information, please click here

Contacts:
Joe Winters

44-020-747-04815

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Physics

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Nanotubes/Buckyballs/Fullerenes

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Materials/Metamaterials

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Announcements

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Environment

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Energy

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project