Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasma nanoscience needed for green energy revolution

Abstract:
A step change in research relating to plasma nanoscience is needed for the world to overcome the challenge of sufficient energy creation and storage, says a leading scientist from CSIRO Materials Science and Engineering and the University of Sydney, Australia.

Plasma nanoscience needed for green energy revolution

UK | Posted on April 13th, 2011

Professor Kostya (Ken) Ostrikov of the Plasma Nanoscience Centre Australia, CSIRO Materials Science and Engineering, has highlighted, in IOP Publishing's Journal of Physics D: Applied Physics, the unique potential of plasma nanoscience to control energy and matter at fundamental levels to produce cost-effective, environmentally and human health friendly nanoscale materials for applications in virtually any area of human activity.

Professor Ostrikov is a pioneer in the field of plasma nanoscience, and was awarded the Australian Future Fellowship (2011) of the Australian Research Council, Walter Boas Medal of the Australian Institute of Physics (2010), Pawsey Medal of the Australian Academy of Sciences (2008), and CEO Science Leader Fellowship and Award of CSIRO (2008) on top of gaining seven other prestigious fellowships and eight honorary and visiting professorships in six different countries.

He said: "We can find the best, most suitable plasmas and processes for virtually any application-specific nanomaterials using plasma nanoscience knowledge.

"The terms 'best' and 'most-suitable' have many dimensions including quality, yield, cost, environment and human friendliness, and most recently, energy efficiency."

Plasma nanoscience involves the use of plasma - an ionised gas at temperatures from just a few to tens of thousands Kelvin - as a tool to create and process very small (nano) materials for use in energy conversion, electronics, IT, health care, and numerous other applications that are critical for a sustainable future.

In particular, Ostrikov points out the ability of plasma to synthesise carbon nanotubes - one of the most exciting materials in modern physics, with extraordinary properties arising from their size, dimension, and structure, capable of revolutionising the way energy is produced, transferred and stored.

Until recently, the unpredictable nature of plasma caused some scientists to question its ability to control energy and matter in order to construct nanomaterials, however Ostrikov draws on existing research to provide evidence that it can be controlled down to fundamental levels leading to cost-effective and environmentally friendly processes.

Compared to existing methods of nanomaterials production, Ostrikov states that plasma can offer a simple, cheaper, faster, and more energy efficient way of moving "from controlled complexity to practical simplicity" and has encouraged researchers to grasp the opportunities that present themselves in this field.

####

For more information, please click here

Contacts:
Joe Winters

44-020-747-04815

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Physics

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Cutting-edge nanotechnologies are breaking into industries November 18th, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Materials/Metamaterials

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project