Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Senior develops clothes that can trap poisonous gas

Allie Thielens '11 models the gas-absorbing hood and mask, designed by Jennifer Keane '11.
Allie Thielens '11 models the gas-absorbing hood and mask, designed by Jennifer Keane '11.

Abstract:
By Elizabeth Simpson

A new Cornell cloth that can selectively trap noxious gases and odors has been fashioned by a senior into a mask and hooded shirts inspired by the military.

Senior develops clothes that can trap poisonous gas

Ithaca, NY | Posted on April 12th, 2011

The garments use metal organic framework molecules (MOFs) and cellulose fibers that were assembled in assistant fiber science professor Juan Hinestroza's lab to create the special cloth.

MOFs, which are clustered crystalline compounds, can be manipulated at the nanolevel to have cages that are the exact same size as the gas they are trying to capture, said Jennifer Keane '11, a fiber science and apparel design (FSAD) major in the College of Human Ecology.

Keane worked with Hinestroza and fiber science postdoctoral associate Marcia Da Silva Pinto to create the gas-absorbing hood and mask. Some of the basic science behind this project was funded by the U.S. Department of Defense.

"The initial goal of attaching the MOFs to fibers was sponsored by the Defense Threat Reduction Agency. We wanted to harness the power of these molecules to absorb gases and incorporate these MOFs into fibers, which allows us to make very efficient filtration systems," Hinestroza said.

Da Silva Pinto first created MOF fabrics in Hinestroza's lab, working in collaboration with chemists from Professor Omar Yaghi's group at the University of California-Los Angeles; Yaghi is one of the pioneers and leaders of MOF chemistry, said Hinestroza.

At first the process did not work smoothly. "These crystalline molecules are like a powder that cannot easily become part of cloth," Da Silva Pinto noted. After months of trying to attach the particles to the fiber, the researchers realized that, "The key was to bring the fiber to the particle ... It was a real paradigm shift," she said.

"Now we can make large surfaces of fabric coated with MOFs, and we are looking at scaling up this technology to nanofibers," said Hinestroza. "This type of work would only be possible at a place like Cornell where you have this unique merging of disciplines, where a fashion designer can interact easily with a chemist or a materials scientist."

Though trained as a chemical engineer, Hinestroza said he likes "to work with designers because they think very differently than scientists. I love that because that's where the real creativity comes, when you have this collision of styles and thinking processes."

Keane, who took Hinestroza's Textiles, Apparel and Innovation class, said she started Cornell as a pre-med major but switched to FSAD because she enjoyed the creative aspect of sewing and designing her own clothing in high school. She has since interned with Nike and recently received a job offer from Adidas.

She noted that while her MOF hood and mask will not be showcased in the upcoming Cornell Fashion Collective spring fashion show at Barton Hall, April 16, 7-9:30 p.m., her line of comfortable women's sportswear will be. It includes many geometric patterns and bright jewel tones.

"It's a lot of knits, jersey and this brushed denim, which is really soft ... It was based off of jewelry designs that I saw in Italy," she said.

Elizabeth Simpson '14 is a writer intern for the Cornell Chronicle.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Susan Lang
(607) 255-3613

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Military

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Researchers develop completely new kind of polymer: Hybrid polymers could lead to new concepts in self-repairing materials, drug delivery and artificial muscles January 30th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists build a neural network using plastic memristors: A group of Russian and Italian scientists have created a neural network based on polymeric memristors -- devices that can potentially be used to build fundamentally new computers January 28th, 2016

Textiles/Clothing

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

A step towards keeping up with Moore's Law: POSTECH researchers develop a novel and efficient fabrication technology for cross-shaped memristor January 30th, 2016

Durability of Silver Nanoparticles in Production of Antibacterial Woolen Fabrics December 14th, 2015

Scientists see the light on microsupercapacitors: Rice University's laser-induced graphene makes simple, powerful energy storage possible December 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic