Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Senior develops clothes that can trap poisonous gas

Allie Thielens '11 models the gas-absorbing hood and mask, designed by Jennifer Keane '11.
Allie Thielens '11 models the gas-absorbing hood and mask, designed by Jennifer Keane '11.

Abstract:
By Elizabeth Simpson

A new Cornell cloth that can selectively trap noxious gases and odors has been fashioned by a senior into a mask and hooded shirts inspired by the military.

Senior develops clothes that can trap poisonous gas

Ithaca, NY | Posted on April 12th, 2011

The garments use metal organic framework molecules (MOFs) and cellulose fibers that were assembled in assistant fiber science professor Juan Hinestroza's lab to create the special cloth.

MOFs, which are clustered crystalline compounds, can be manipulated at the nanolevel to have cages that are the exact same size as the gas they are trying to capture, said Jennifer Keane '11, a fiber science and apparel design (FSAD) major in the College of Human Ecology.

Keane worked with Hinestroza and fiber science postdoctoral associate Marcia Da Silva Pinto to create the gas-absorbing hood and mask. Some of the basic science behind this project was funded by the U.S. Department of Defense.

"The initial goal of attaching the MOFs to fibers was sponsored by the Defense Threat Reduction Agency. We wanted to harness the power of these molecules to absorb gases and incorporate these MOFs into fibers, which allows us to make very efficient filtration systems," Hinestroza said.

Da Silva Pinto first created MOF fabrics in Hinestroza's lab, working in collaboration with chemists from Professor Omar Yaghi's group at the University of California-Los Angeles; Yaghi is one of the pioneers and leaders of MOF chemistry, said Hinestroza.

At first the process did not work smoothly. "These crystalline molecules are like a powder that cannot easily become part of cloth," Da Silva Pinto noted. After months of trying to attach the particles to the fiber, the researchers realized that, "The key was to bring the fiber to the particle ... It was a real paradigm shift," she said.

"Now we can make large surfaces of fabric coated with MOFs, and we are looking at scaling up this technology to nanofibers," said Hinestroza. "This type of work would only be possible at a place like Cornell where you have this unique merging of disciplines, where a fashion designer can interact easily with a chemist or a materials scientist."

Though trained as a chemical engineer, Hinestroza said he likes "to work with designers because they think very differently than scientists. I love that because that's where the real creativity comes, when you have this collision of styles and thinking processes."

Keane, who took Hinestroza's Textiles, Apparel and Innovation class, said she started Cornell as a pre-med major but switched to FSAD because she enjoyed the creative aspect of sewing and designing her own clothing in high school. She has since interned with Nike and recently received a job offer from Adidas.

She noted that while her MOF hood and mask will not be showcased in the upcoming Cornell Fashion Collective spring fashion show at Barton Hall, April 16, 7-9:30 p.m., her line of comfortable women's sportswear will be. It includes many geometric patterns and bright jewel tones.

"It's a lot of knits, jersey and this brushed denim, which is really soft ... It was based off of jewelry designs that I saw in Italy," she said.

Elizabeth Simpson '14 is a writer intern for the Cornell Chronicle.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Susan Lang
(607) 255-3613

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Discoveries

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Military

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Textiles/Clothing

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project