Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Molecular frameworks show potential for better solar cells

Fernando Uribe-Romo
Molecular building blocks assemble on graphene to provide oriented and ordered covalent organic frameworks.
Fernando Uribe-Romo
Molecular building blocks assemble on graphene to provide oriented and ordered covalent organic frameworks.

Abstract:
Solar cells made from organic materials are inexpensive, lightweight and flexible, but their performance lags behind cells that contain silicon or other inorganic materials. Cornell chemist William Dichtel and colleagues have found a way to synthesize ordered organic films that could be a major step toward solving this problem.

Molecular frameworks show potential for better solar cells

Ithaca, NY | Posted on April 11th, 2011

It's the first time researchers have been able to coax materials known as covalent organic frameworks (COFs) out of their common powdered form into flat sheets of precisely ordered molecules on a conductive surface. That clears a major hurdle toward using COFs to replace the more expensive, less versatile materials used in solar cells and other electronics today.

The research appears in the April 8 issue of Science.

COFs have a variety of properties that are not found in traditional organic polymers, including excellent thermal stability, high surface area and permanent porosity. But while researchers have identified them as intriguing candidates for such devices, they have been hamstrung by the fact that the materials normally exist only as insoluble powders.

Dichtel, assistant professor of chemistry and chemical biology, and colleagues developed a simple process for growing thin (25-400 nanometers thick) films of COFs on a surface of graphene, a single-atom-thick sheet of carbon. They used X-ray diffraction at the Cornell High Energy Synchrotron Source (CHESS) to determine the materials' structure and orientation. The COFs grow as continuous films of well ordered, stacked layers on the graphene surfaces.

Unlike the powder form, the films grown on transparent surfaces can be probed using modern optical measurements. Researchers can also vary the properties of the frameworks by altering the structure of their components.

"These materials are so versatile -- we can tune the properties rationally, rather than relying on molecules to pack into films unpredictably," Dichtel said.

To demonstrate, the researchers created three variations of the frameworks. Of the three, one shows particular promise for solar cells -- it uses molecules called phthalocyanines, which are commonly found in industrial dyes used in products from blue jeans to ink pens.

Phthalocyanines, which are related to chlorophyll, absorb light over most of the solar spectrum -- a rare property for a single organic material.

"Obtaining these materials as films on electrode materials is a major step toward studying and using them in devices," Dichtel said. "This method represents a general way to assemble molecules on surfaces predictably. This work opens the door to take these materials in many other directions."

The research was funded by Cornell and the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Susan Lang
(607) 255-3613


Lauren Gold


Chronicle Online
312 College Ave.
Ithaca, NY 14850
607.255.4206

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Graphene

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Record high sensitive Graphene Hall sensors May 21st, 2015

Simulations predict flat liquid May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Thin films

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Science and Technology of Advanced Materials (STAM): Reported successes and failures aid hot pursuit of superconductivity May 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Discoveries

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Energy

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Industrial Nanotech, Inc. Announces Official Launch of the Eagle Platinum Tile™ May 19th, 2015

Solar/Photovoltaic

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

ORNL demonstrates first large-scale graphene fabrication May 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project