Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Penn Research Advances Understanding of Lead Selenide Nanowires

Lead selenide nanowires integrated in a device.
Lead selenide nanowires integrated in a device.

Abstract:
The advancements of our electronic age rests on our ability to control how electric charge moves, from point A to point B, through circuitry. Doing so requires particular precision, for applications ranging from computers, image sensors and solar cells, and that task falls to semiconductors.

Penn Research Advances Understanding of Lead Selenide Nanowires

Philadelphia, PA | Posted on April 11th, 2011

Now, a research team at the University of Pennsylvania's schools of Engineering and Applied Science and Arts and Sciences has shown how to control the characteristics of semiconductor nanowires made of a promising material: lead selenide.

Led by Cherie Kagan, professor in the departments of Electrical and Systems Engineering, Materials Science and Engineering and Chemistry and co-director of Pennergy, Penn's center focused on developing alternative energy technologies, the team's research was primarily conducted by David Kim, a graduate student in the Materials Science and Engineering program.

The team's work was published online in the journal ACS Nano and will be featured in the Journal's April podcast.

The key contribution of the team's work has to do with controlling the conductive properties of lead selenide nanowires in circuitry. Semiconductors come in two types, n and p, referring to the negative or positive charge they can carry. The ones that move electrons, which have a negative charge, are called "n-type." Their "p-type" counterparts don't move protons but rather the absence of an electron — a "hole" — which is the equivalent of moving a positive charge.

Before they are integrated into circuitry, the semiconductor nanowire must be "wired up" into a device. Metal electrodes must be placed on both ends to allow electricity to flow in and out; however, the "wiring" may influence the observed electrical characteristics of the nanowires, whether the device appears to be n-type or p-type. Contamination, even from air, can also influence the device type. Through rigorous air-free synthesis, purification and analysis, they kept the nanowires clean, allowing them to discover the unique properties of these lead selenide nanomaterials.

Researchers designed experiments allowing them to separate the influence of the metal "wiring" on the motion of electrons and holes from that of the behavior intrinsic to the lead selenide nanowires. By controlling the exposure of the semiconductor nanowire device to oxygen or the chemical hydrazine, they were able to change the conductive properties between p-type and n-type. Altering the duration and concentration of the exposure, the nanowire device type could be flipped back and forth.

"If you expose the surfaces of these structures, which are unique to nanoscale materials, you can make them p-type, you can make them n-type, and you can make them somewhere in between, where it can conduct both electrons and holes," Kagan said. "This is what we call ‘ambipolar.'"

Devices combining one n-type and one p-type semiconductor are used in many high-tech applications, ranging from the circuits of everyday electronics, to solar cells and thermoelectrics, which can convert heat into electricity.

"Thinking about how we can build these things and take advantage of the characteristics of nanoscale materials is really what this new understanding allows," Kagan said.

Figuring out the characteristics of nanoscale materials and their behavior in device structures are the first steps in looking forward to their applications.

These lead selenide nanowires are attractive because they may be synthesized by low-cost methods in large quantities.

"Compared to the big machinery you need to make other semiconductor devices, it's significantly cheaper," Kagan said. "It doesn't look much more complicated than the hoods people would recognize from when they had to take chemistry lab."

In addition to the low cost, the manufacturing process for lead selenide nanowires is relatively easy and consistent.

"You don't have to go to high temperatures to get mass quantities of these high-quality lead selenide nanowires," Kim said. "The techniques we use are high yield and high purity; we can use all of them."

And because the conductive qualities of the lead selenide nanowires can be changed while they are situated in a device, they have a wider range of functionality, unlike traditional silicon semiconductors, which must first be "doped" with other elements to make them "p" or "n."

The Penn team's work is a step toward integrating these nanomaterials in a range of electronic and optoelectronic devices, such as photo sensors.

The research was conducted by Kim and Kagan, along with Materials Science and Engineering undergraduate and graduate students Tarun R. Vemulkar and Soong Ju Oh; Weon-Kyu Koh, a graduate student in Chemistry; and Christopher B. Murray, a professor in Chemistry and in Materials Science and Engineering.

This work was supported with funding from the National Science Foundation Division of Materials Research, the National Science Foundation Solar Program and the National Science Foundation Nano-Bio Interface Center.

####

For more information, please click here

Contacts:
Evan Lerner

215-573-6604

Copyright © University of Pennsylvania

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Discoveries

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Announcements

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE