Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Chemical Engineers at UCSB Design Molecular Probes to Study Disease

Enhanced detection of
endogenous protease activity.
Image: Abeer Jabaiah
Enhanced detection of endogenous protease activity. Image: Abeer Jabaiah

Abstract:
Chemical engineers at UC Santa Barbara expect that their new process to create molecular probes may eventually result in the development of new drugs to treat cancer and other illnesses.

Chemical Engineers at UCSB Design Molecular Probes to Study Disease

Santa Barbara, CA | Posted on April 6th, 2011

Their work, reported in the journal Chemistry & Biology, published by Cell Press, describes a new strategy to build molecular probes to visualize, measure, and learn about the activities of enzymes, called proteases, on the surface of cancer cells.

Patrick Daugherty, senior author and professor of chemical engineering at UCSB, explained that the probes are effective at understanding proteases involved in tumor metastasis.

"Tumor metastasis is widely regarded as the cause of death for cancer patients," said Daugherty. "It's not usually the primary tumor that causes death. Metastasis is mediated by proteases, like the one we are studying here. These proteases can enable tumor cells to separate and degrade surrounding tissue, and then migrate to sites distant from the primary tumor. The tumor doesn't just fall apart. There are many events that must occur for a tumor to release cancerous cells into the blood stream that can circulate and end up in other tissues such as liver or bone."

The probes allowed the researchers, for the first time, to measure directly the activity of a protease involved in metastasis. They did this by adding their probe into a dish of tumor cells. They then measured the activity of this protease that breaks down collagen -- the single most abundant protein (by mass) in the human body.

"We have immediate plans to use similar probes to effectively distinguish metastatic HER2 positive tumors, one of the most commonly used biomarkers of breast cancer," said Daugherty. "A significant fraction of patients have HER2 positive tumors but we don't know which of those tumors is going to metastasize yet. But our ability to make these probes can allow us to identify which of those HER2 positive tumors have the ability to break down that surrounding tissue, to detach from the primary tumor, and to establish a separate tumor somewhere else in the body."

The authors designed the molecular probe to be recognized by a single protease rather than by the many proteases that are present in human tissues. That is half of the probe. The other half of the probe involves an optical technique used to measure activity. This approach relies upon the use of two engineered fluorescent proteins, derived from marine organisms, that absorb and emit light in a process called FRET, or Forster resonance energy transfer.

To prepare the probes, the researchers introduced a gene that encodes the probe into the bacteria E. coli. Then they produced and purified significant quantities of the probe. All of the information needed for the probe is encoded by a DNA sequence. The probes are easy and inexpensive to produce, as well as easily shared with other researchers.

In addition to studying cancer, similarly constructed probes have ramifications for studying Alzheimer's disease, arthritis and connective tissue diseases, bacterial infections, viruses, and many other diseases.

"The fact that you can generalize the concept, and the way you make these probes, to many systems, makes it attractive," said Daugherty. "We happen to study the activity of this protease and a certain type of tumor cells that are derived from cancer patients. But you could apply this to hundreds of molecules and really develop a working understanding of how groups of proteases function together in cell biology."

In individuals with rheumatoid arthritis, for example, there is increased production of proteases, including the one studied by Daugherty's team. This protease mediates collagen breakdown and joint destruction. "If you've got an enzyme that can chew up collagen and you've got lots of collagen in your joints, then you would expect that you would see more rapid degradation of the joint by those proteases," said Daugherty.

Daugherty's research group has created approximately 25 probes analogous to the one presented in the paper. They are building a panel of about 100 probes and will use this panel to characterize how different proteases function. This investigation could lead to new drug therapies for a variety of diseases.

The first author on the paper is Daugherty's former graduate student, Abeer Jabaiah, who is applying a similar process to another protease involved in tumor metastasis as a postdoctoral fellow in Daugherty's lab. Funding for this work was provided by the National Institutes of Health through the National Cancer Institute's Center of Cancer Nanotechnology Excellence and the National Heart, Lung, and Blood Institute's Program of Excellence in Nanotechnology.

####

For more information, please click here

Contacts:
Gail Gallessich

(805) 893-7220

George Foulsham

(805) 893-3071

Copyright © UCSB

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Chemistry

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Molecular Nanotechnology

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project