Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne Researcher named top-5 materials scientist of 2000s

Yugang Sun
Yugang Sun

Abstract:
Argonne scientist Yugang Sun has been recognized as the one of the five top materials scientists in the world over the past decade, according to a new ranking recently released by Thomson Reuters.

Argonne Researcher named top-5 materials scientist of 2000s

Argonne, IL | Posted on April 6th, 2011

Sun garnered the fifth place in Thomson Reuters' ranking of the top 100 materials scientists of the past decade as measured by how frequently their papers were cited by their peers. Sun also was ranked number 61 in a similar list of the top 100 chemists in the world.

"It's a terrific honor to receive this kind of recognition," Sun said. "Everyone on this list has made major contributions to chemistry and materials science research, and I'm glad that I could do my part to advance the field to where it is today."

In the past 10 years, Sun led the invention of two unique processes for the creation of nanocrystals. The most famous, called the polyol process, which reacts a special class of alcohols with metal salts to create shaped nanoparticles of many different types of metals.

According to Sun, the methods that he used to create nanoparticles were so efficient and widely adopted that they caused a spike in demand for the special chemicals needed. "Once other scientists noticed that they could create nanoparticles so easily, it was almost like the California gold rush," he said.

Sun's interest in materials science emerged early during his studies as a high school student in China. One of his chemistry teachers took a particular liking to him, and worked with Sun after school and on weekends to foster his natural talents.

After graduating college, Sun wanted to continue his study at a pre-eminent graduate school in the United States, but he could not afford the expense. "I found it a lot more financially beneficial to complete my Ph.D. studies in China then look for a postdoctoral position in America," he said.

Today, Sun devotes most of his time at Argonne's Center for Nanoscale Materials (CNM) to the study of the complex growth mechanisms of nanoparticle formation that underlie the well known chemistries in solution phase. "I am lucky to work at CNM," he said, "where easy access to these state-of-art facilities gives me the unique opportunity to develop new techniques for probing the mysteries behind nanoparticle growth. The more we know, the better we can control nanoparticle growth and tailor their properties for applications ranging from energy harvesting and conversion, photonics and optical sensing."

####

About Argonne National Laboratory
The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Laboratories

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Visualizing the Lithiation of a Nanosized Iron-Oxide Material in Real Time: Electron microscopy technique reveals the reaction pathways that emerge as lithium ions are added to magnetite nanoparticles May 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Materials/Metamaterials

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Announcements

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic