Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New technology could stamp out bacteria in persistent wounds

Abstract:
Using an advanced form of a rubber stamp, researchers have developed a way to adhere an ultra-thin antibacterial coating to a wound.

The active ingredient, silver, "has been used to prevent and treat infections for ages," says first author Ankit Agarwal, a postdoctoral fellow in chemical and biological engineering at the University of Wisconsin-Madison. "But silver can also kill skin cells, and therefore we need to develop materials that deliver antibacterial but nontoxic levels of silver to wounds."

New technology could stamp out bacteria in persistent wounds

Madison, WI | Posted on April 4th, 2011

In a study just published in the journal Advanced Functional Materials, Agarwal, chemical and biological engineering professor Nicholas Abbott, and colleagues described a process for creating a transparent ultra-thin polymer coating carrying precise loads of extremely fine silver nanoparticles.

The coating, just a few molecules thick, was assembled on a flexible piece of rubber and then rubber-stamped onto a piece of cadaver skin that simulated a wound in the experiment.

To test the activity against bacteria, the researchers treated skin samples with two bacteria that commonly infect wounds. Using a silver dosage that had not harmed skin cells in previous tests, the bacteria were undetectable within 12 hours, Agarwal says.

Persistent wounds are a major cause of pain, expense and disability. Approximately two million people in the United States seek hospital care for burns each year, and another six million people have chronic wounds from other causes.

"Chronic wounds are a major national burden," says Michael Schurr, a collaborator on the study who is a professor of surgery at UW-Madison. "If you look at the coming epidemic of diabetes, foot ulcers are very common in diabetes, and they often lead to amputation. Despite all the advances in surgery and medicine, the wound care we are providing now is much the same as what we offered 20 or 50 years ago."

Contact printing with stamps is widely used in industry to apply precise coatings to metal and glass, Agarwal says, but the researchers had to invent a method to transfer the polymer layer to softer skin. "We found, serendipitously, that if we introduce certain micrometer-sized beads in the films, it greatly enhances the transfer of films to soft materials," says Agarwal.

The technology, developed in collaboration with Charles Czuprynski of UW-Madison and Christopher Murphy, who is now at the University of California, offers many benefits, says Agarwal. First, it places the silver nanoparticles directly in the wound, allowing nontoxic silver doses (up to 100 times lower than what is used in commercial silver dressings) to have antibacterial activity. Second, chemical engineers should be able to make a sustained-release version to reduce the need for repeated applications and painful dressing changes.

Furthermore, while bacteria can efficiently evolve resistance to antibiotics, they virtually never develop resistance to silver. "The silver works by damaging bacterial cell membranes and interfering with metabolic functions of the microbes," says Agarwal. Silver can also kill fungi and yeast and inactivate viruses.

The films containing silver nanoparticles are composed of hundreds of individual layers and take several hours to prepare on a robotic machine on campus. But none of this chemistry needs to be done near the patient, Agarwal says, and the stamping process itself takes just 30 seconds. In the lab, the stamps are impressed onto cadaver skin using a handheld roller like those artists use to make woodcut prints.

Preliminary studies have shown that the films and stamping process do not impair healing of wounds in diabetic mice, Agarwal says. Further studies, directed by Jonathan McAnulty of the UW-Madison School of Veterinary Medicine, are investigating the antibacterial effect of silver-nanoparticle films in infected wounds in mice and pigs.

The process could be used more generally, says Abbott. "This method is applicable to a range of soft materials and could incorporate a variety of molecules onto the tissue surface that could influence fundamental cell behaviors involved in healing."

If and when the technology passes its animal trials, it will be time to prepare human trials. "We have a multidisciplinary team of veterinary scientists, chemists, surgeons, chemical engineers and material scientists who have experience taking medical devices through the Food and Drug Administration," Agarwal says. "The need is great, but it can take another few years before the treatment is available to patients."

####

For more information, please click here

Contacts:
David Tenenbaum

Copyright © University of Wisconsin-Madison

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Nanomedicine

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

JPK reports on how the University of Glasgow is using their NanoWizardŽ AFM and CellHesion module to study how cells interact with their surroundings August 2nd, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Materials/Metamaterials

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project