Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The First Non-Trivial Atom Circuit: Progress towards an Atom SQUID Closer Look at Cell Membrane Shows Cholesterol 'Keeping Order' A Measurement First: NIST 'Noise Thermometry' System Measures Boltzmann Constant Microreactors: Small Scale Chemistry Could Lead to Big Improvements f

Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right).
Credit: JQI/NIST
Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right).
Credit: JQI/NIST

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have created the first nontrivial "atom circuit," a donut-shaped loop of ultracold gas atoms circulating in a current analogous to a ring of electrons in a superconducting wire. The circuit is "nontrivial" because it includes a circuit element—an adjustable barrier that controls the flow of atom current to specific allowed values. The newly published* work was done at the Joint Quantum Institute, a NIST/UM collaboration.

The First Non-Trivial Atom Circuit: Progress towards an Atom SQUID Closer Look at Cell Membrane Shows Cholesterol 'Keeping Order' A Measurement First: NIST 'Noise Thermometry' System Measures Boltzmann Constant Microreactors: Small Scale Chemistry Could Lead to Big Improvements f

Boulder, CO | Posted on March 31st, 2011

Ultracold gases, such as the Bose-Einstein condensate of sodium atoms in this experiment, are fluids that exhibit the unusual rules of the quantum world. Atomic quantum fluids show promise for constructing ultraprecise versions of sensors and other devices such as gyroscopes (which stabilize objects and aid in navigation). Super?uid helium circuits have already been used to detect rotation. Superconducting quantum interference devices (SQUIDs) use superconducting electrons in a loop to make highly sensitive measurements of magnetic fields. Researchers are striving to create an ultracold-gas version of a SQUID, which could detect rotation. Combined with ultracold atomic-gas analogs of other electronic devices and circuits, or "atomtronics" that have been envisioned, such as diodes and transistors, this work could set the stage for a new generation of ultracold-gas-based precision sensors.

To make their atom circuit, researchers created a long-lived persistent current—a frictionless flow of particles—in a Bose-Einstein condensate of sodium atoms held by an arrangement of lasers in a so-called optical trap that confines them to a toroidal, or donut, shape. Persistent flow—occurring for a record-high 40 seconds in this experiment—is a hallmark of superfluidity, the fluid analog of superconductivity.

The atom current does not circle the ring at just any velocity, but only at specified values, corresponding in this experiment to just a single quantum of angular momentum. A focused laser beam creates the circuit element—a barrier across one side of the ring. The barrier constitutes a tunable "weak link" that can turn off the current around the loop.

Superflow stops abruptly when the strength of the barrier is sufficiently high. Like water in a pinched garden hose, the atoms speed up in the vicinity of the barrier. But when the velocity reaches a critical value, the atoms encounter resistance to flow (viscosity) and the circulation stops, as there are no external forces to sustain it.

In atomic Bose-Einstein condensates, researchers have previously created Josephson junctions, a thin barrier separating two superfluid regions, in a single atomic trap. SQUIDs require a Josephson junction in a circuit. This present work represents the implementation of a complete atom circuit, containing a superfluid ring of current and a tunable weak link barrier. This is an important step toward realizing an atomic SQUID analog.

* A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson, W. D. Phillips and G. K. Campbell. Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Physical Review Letters. Published online March 28, 2011.

####

For more information, please click here

Contacts:
Ben Stein

301-975-3097

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Physics

New pathway to valleytronics January 27th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

Nano-beaker offers insight into the condensation of atoms January 21st, 2015

Atoms can be in 2 places at the same time: Researchers of the University of Bonn have shown that cesium atoms do not follow well-defined paths January 20th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Sensors

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Announcements

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Crystal light: New light-converting materials point to cheaper, more efficient solar power: University of Toronto engineers study first single crystal perovskites for new solar cell and LED applications January 30th, 2015

Research partnerships

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE