Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The First Non-Trivial Atom Circuit: Progress towards an Atom SQUID Closer Look at Cell Membrane Shows Cholesterol 'Keeping Order' A Measurement First: NIST 'Noise Thermometry' System Measures Boltzmann Constant Microreactors: Small Scale Chemistry Could Lead to Big Improvements f

Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right).
Credit: JQI/NIST
Atom circuit: False color images of an "atom circuit" made of an ultracold sodium gas. Red denotes a greater density of atoms and traces the path of circulating atoms around the ring. A laser-based barrier can stop the flow of atoms around the circuit (left); without the barrier the atoms circulate around the ring (right).
Credit: JQI/NIST

Abstract:
Researchers from the National Institute of Standards and Technology (NIST) and the University of Maryland (UM) have created the first nontrivial "atom circuit," a donut-shaped loop of ultracold gas atoms circulating in a current analogous to a ring of electrons in a superconducting wire. The circuit is "nontrivial" because it includes a circuit element—an adjustable barrier that controls the flow of atom current to specific allowed values. The newly published* work was done at the Joint Quantum Institute, a NIST/UM collaboration.

The First Non-Trivial Atom Circuit: Progress towards an Atom SQUID Closer Look at Cell Membrane Shows Cholesterol 'Keeping Order' A Measurement First: NIST 'Noise Thermometry' System Measures Boltzmann Constant Microreactors: Small Scale Chemistry Could Lead to Big Improvements f

Boulder, CO | Posted on March 31st, 2011

Ultracold gases, such as the Bose-Einstein condensate of sodium atoms in this experiment, are fluids that exhibit the unusual rules of the quantum world. Atomic quantum fluids show promise for constructing ultraprecise versions of sensors and other devices such as gyroscopes (which stabilize objects and aid in navigation). Super?uid helium circuits have already been used to detect rotation. Superconducting quantum interference devices (SQUIDs) use superconducting electrons in a loop to make highly sensitive measurements of magnetic fields. Researchers are striving to create an ultracold-gas version of a SQUID, which could detect rotation. Combined with ultracold atomic-gas analogs of other electronic devices and circuits, or "atomtronics" that have been envisioned, such as diodes and transistors, this work could set the stage for a new generation of ultracold-gas-based precision sensors.

To make their atom circuit, researchers created a long-lived persistent current—a frictionless flow of particles—in a Bose-Einstein condensate of sodium atoms held by an arrangement of lasers in a so-called optical trap that confines them to a toroidal, or donut, shape. Persistent flow—occurring for a record-high 40 seconds in this experiment—is a hallmark of superfluidity, the fluid analog of superconductivity.

The atom current does not circle the ring at just any velocity, but only at specified values, corresponding in this experiment to just a single quantum of angular momentum. A focused laser beam creates the circuit element—a barrier across one side of the ring. The barrier constitutes a tunable "weak link" that can turn off the current around the loop.

Superflow stops abruptly when the strength of the barrier is sufficiently high. Like water in a pinched garden hose, the atoms speed up in the vicinity of the barrier. But when the velocity reaches a critical value, the atoms encounter resistance to flow (viscosity) and the circulation stops, as there are no external forces to sustain it.

In atomic Bose-Einstein condensates, researchers have previously created Josephson junctions, a thin barrier separating two superfluid regions, in a single atomic trap. SQUIDs require a Josephson junction in a circuit. This present work represents the implementation of a complete atom circuit, containing a superfluid ring of current and a tunable weak link barrier. This is an important step toward realizing an atomic SQUID analog.

* A. Ramanathan, K. C. Wright, S. R. Muniz, M. Zelan, W. T. Hill III, C. J. Lobb, K. Helmerson, W. D. Phillips and G. K. Campbell. Superflow in a toroidal Bose-Einstein condensate: an atom circuit with a tunable weak link. Physical Review Letters. Published online March 28, 2011.

####

For more information, please click here

Contacts:
Ben Stein

301-975-3097

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Physics

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Chip Technology

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoelectronics

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Discoveries

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Announcements

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

Nanocatalysis for organic chemistry: This research article by Dr. Qien Xu et al. is published in Current Organic Chemistry, Volume 20, Issue 19, 2016 August 30th, 2016

Meteorite impact on a nano scale August 29th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic