Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research and Markets: Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions - Nano-Sensors Not to Reach Market Until 2020-2025

Abstract:
Research and Markets has announced the addition of the "Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions" report to their offering.

Research and Markets: Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions - Nano-Sensors Not to Reach Market Until 2020-2025

Dublin, Ireland | Posted on March 31st, 2011

This report analyzes Nokia's research into NanoTechnology for Mobile Devices, carried out with the University of Cambridge. This research is implementing their Morph concept from 2008, and is exploring a wide range of NanoTechnologies. We draw information from research publications and presentations, patent applications, demonstrations and other documents to assemble a complete picture of Nokia's research, its implications, and its future directions.

Technologies for: Flexible and stretchable devices and circuits Flexible high-power fast-release batteries Materials that repel water and absorb solar energy Flexible touch-screen displays Harvesting energy from 500mhz-10ghz RF and more

Around three years ago Nokia released a video of their Morph concept, a mobile device based on nanotechnology. This vision included a flexible and stretchable phone that could be bent into many shapes and worn as a bracelet. It included sensors for things such as rotten or unclean food, and the ability to recharge from the sun.

The report draws information from Nokia patent applications, presentations, demo videos and seminars, which cover most of the innovative features of their concept.

Many areas are being researched with multiple applications in mind. For example, technology for flexible & stretchable electronics for a Morph-like flexible cellphone can also be used for a glove that senses movements as an input to a phone or computer. Also, thin and flexible batteries for a Morph-like device can also enable stronger camera flashes because of their high storage & fast energy release. Multiple applications of the same core technology may enable Nokia to bring NanoTech innovations to market sooner, without waiting for the entire Morph vision to be implemented.

Grizzly Analytics believes that some of the technologies detailed here, such as flexible device components and device materials absorbing energy from the sun and ambient radio energy, will start to reach market in 5-7 years, while other areas such as nano-sensors and completely flexible devices will take until 2020-2025.

BOTTOM LINE: Nokia & others are getting first access to technology that will revolutionize electronic devices form & function. Others will buy components, but risk being behind in understanding the implications for hardware integration and design.

Key Topics Covered:

Executive Summary
Table of Functions and Technologies
Speculations, Opportunities & Broader Implications
Nokia's Morph Vision
Nokia's NanoTech Research Agenda
NanoTech Demonstrations in Sept 2010
NanoTech-Related Patent Applications
Patents from Cambridge alliance
Non-Nokia patents from collaborating researchers
Patents from other Nokia research centers
Other NanoTech-Related Research
Analysis: Agenda and Results
Companies Mentioned:

Nokia
Cambridge University

####

For more information, please click here

Contacts:
Research and Markets
Laura Wood, Senior Manager,

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Sensors

Leti’s Autonomous-Vehicle System Embedded in Infineon’s AURIX Platform: Leti’s Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

New diode features optically controlled capacitance: Israeli researchers have developed a new optically tunable capacitor with embedded metal nanoparticles, creating a metal-insulator-semiconductor diode that is tunable by illumination. June 8th, 2017

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible May 29th, 2017

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Research partnerships

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project