Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Research and Markets: Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions - Nano-Sensors Not to Reach Market Until 2020-2025

Abstract:
Research and Markets has announced the addition of the "Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions" report to their offering.

Research and Markets: Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions - Nano-Sensors Not to Reach Market Until 2020-2025

Dublin, Ireland | Posted on March 31st, 2011

This report analyzes Nokia's research into NanoTechnology for Mobile Devices, carried out with the University of Cambridge. This research is implementing their Morph concept from 2008, and is exploring a wide range of NanoTechnologies. We draw information from research publications and presentations, patent applications, demonstrations and other documents to assemble a complete picture of Nokia's research, its implications, and its future directions.

Technologies for: Flexible and stretchable devices and circuits Flexible high-power fast-release batteries Materials that repel water and absorb solar energy Flexible touch-screen displays Harvesting energy from 500mhz-10ghz RF and more

Around three years ago Nokia released a video of their Morph concept, a mobile device based on nanotechnology. This vision included a flexible and stretchable phone that could be bent into many shapes and worn as a bracelet. It included sensors for things such as rotten or unclean food, and the ability to recharge from the sun.

The report draws information from Nokia patent applications, presentations, demo videos and seminars, which cover most of the innovative features of their concept.

Many areas are being researched with multiple applications in mind. For example, technology for flexible & stretchable electronics for a Morph-like flexible cellphone can also be used for a glove that senses movements as an input to a phone or computer. Also, thin and flexible batteries for a Morph-like device can also enable stronger camera flashes because of their high storage & fast energy release. Multiple applications of the same core technology may enable Nokia to bring NanoTech innovations to market sooner, without waiting for the entire Morph vision to be implemented.

Grizzly Analytics believes that some of the technologies detailed here, such as flexible device components and device materials absorbing energy from the sun and ambient radio energy, will start to reach market in 5-7 years, while other areas such as nano-sensors and completely flexible devices will take until 2020-2025.

BOTTOM LINE: Nokia & others are getting first access to technology that will revolutionize electronic devices form & function. Others will buy components, but risk being behind in understanding the implications for hardware integration and design.

Key Topics Covered:

Executive Summary
Table of Functions and Technologies
Speculations, Opportunities & Broader Implications
Nokia's Morph Vision
Nokia's NanoTech Research Agenda
NanoTech Demonstrations in Sept 2010
NanoTech-Related Patent Applications
Patents from Cambridge alliance
Non-Nokia patents from collaborating researchers
Patents from other Nokia research centers
Other NanoTech-Related Research
Analysis: Agenda and Results
Companies Mentioned:

Nokia
Cambridge University

####

For more information, please click here

Contacts:
Research and Markets
Laura Wood, Senior Manager,

U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716

Copyright © Business Wire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Sensors

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Research partnerships

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project