Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Centennial Campus Researchers Develop Technique for Creating Thin Films of Nanoparticles

This is an orientation map of a spin-cast array of FePt nanoparticles. Most nanoparticles are enclosed by a hexagon of six neighboring nanoparticles. Each nanoparticle was color coded according to the angle (in degrees) of the hexagon's orientation.
This is an orientation map of a spin-cast array of FePt nanoparticles. Most nanoparticles are enclosed by a hexagon of six neighboring nanoparticles. Each nanoparticle was color coded according to the angle (in degrees) of the hexagon's orientation.

Abstract:
Researchers on North Carolina State University's Centennial Campus have investigated the viability of a technique called "spincasting" for creating thin films of nanoparticles on an underlying substrate - an important step in the creation of materials with a variety of uses, from optics to electronics.

Centennial Campus Researchers Develop Technique for Creating Thin Films of Nanoparticles

Centennial, NC | Posted on March 30th, 2011

Spincasting, which utilizes centrifugal force to distribute a liquid onto a solid substrate, already has a variety of uses. For example, it is used in the electronics industry to deposit organic thin films on silicon wafers to create transistors.

This is an orientation map of a spin-cast array of FePt nanoparticles. Most nanoparticles are enclosed by a hexagon of six neighboring nanoparticles. Each nanoparticle was color coded according to the angle (in degrees) of the hexagon's orientation.

For this study, the researchers first dispersed magnetic nanoparticles coated with ligands into a solution. The ligands, small organic molecules that bond directly to metals, facilitate the even distribution of the nanoparticles in the solution - and, later, on the substrate itself.

A drop of the solution was then placed on a silicon chip that had been coated with a layer of silicon nitride. The chip was then rotated at high speed, which spread the nanoparticle solution over the surface of the chip. As the solution dried, a thin layer of nanoparticles was left on the surface of the substrate.

Using this technique, the researchers were able to create an ordered layer of nanoparticles on the substrate, over an area covering a few square microns. "The results are promising, and this approach definitely merits further investigation," says Dr. Joe Tracy, an assistant professor of materials science and engineering at NC State and co-author of a paper describing the study.

Tracy explains that one benefit of spincasting is that it is a relatively quick way to deposit a layer of nanoparticles. "It also has commercial potential as a cost-effective way of creating nanoparticle thin films," Tracy says.

However, the approach still faces several hurdles. Tracy notes that modifications to the technique are needed, so that it can be used to coat a larger surface area with nanoparticles. Additional research is also needed to learn how, or whether, the technique can be modified to achieve a more even distribution of nanoparticles over that surface area.

Analysis of the nanoparticle films created using spincasting led to another development as well. The researchers adapted analytical tools to evaluate transmission electron microscopy images of the films they created. One benefit of using these graphical tools is their ability to identify and highlight defects in the crystalline structure of the layer. "These methods for image analysis allow us to gain a detailed understanding of how the nanoparticle size and shape distributions affect packing into monolayers," Tracy says.

The paper, "Formation and Grain Analysis of Spin Cast Magnetic Nanoparticle Monolayers," was published online March 24 by the journal Langmuir. The paper was co-authored by Tracy; NC State Ph.D. student Aaron Johnston-Peck; and former NC State post-doctoral research associate Dr. Junwei Wang. The research was funded by the National Science Foundation, the U.S. Department of Education, and Protochips, Inc.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

Written by Matt Shipman, NCSU News Services

####

About North Carolina State University
Centennial Campus (www.centennial.ncsu.edu) is an internationally recognized 1,314-acre research park and technology campus owned and operated by North Carolina University. Home to more than 60 corporate, government and non-profit partners, such as Red Hat, ABB, and the USDA, collaborative research projects vary from nanofibers and secure open systems technology to serious gaming and biomedical engineering. Four university college programs also have a significant presence on campus College of Engineering, College of Veterinary Medicine, College of Textiles and the College of Education. NC State is one of the top research universities in the country, with expenditures in research approaching more than $325 million annually. The university ranks third among all public universities (without medical schools) in industry-sponsored research expenditures.

For more information, please click here

Contacts:
Dr. Joe Tracy
919.515.2623


Matt Shipman
News Services
919.515.6386

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Thin films

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

Industrial Nanotech, Inc. Introduces Ultra Thin High Performance Thermal Insulation Film for Cooling Personal Electronic Devices July 21st, 2015

Imec Makes Steady Progress on Perovskite Photovoltaic Module reaching a Record 11 Percent Conversion Efficiency July 16th, 2015

Chip Technology

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Photonics/Optics/Lasers

Photonex 2015 - The 3rd biennial Optical Metrology meeting is announced with an exciting number of speakers from across Europe July 28th, 2015

Nanophase to present paper on slurry pH impact at Optics + Photonics conference July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project