Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Chemists' Biosensor May Improve Food, Water Safety and Cancer Detection

Abstract:
A nanotechnology-based biosensor being developed by Kansas State University researchers may allow early detection of both cancer cells and pathogens, leading to increased food safety and reduced health risks.

Chemists' Biosensor May Improve Food, Water Safety and Cancer Detection

Manhattan, KS | Posted on March 30th, 2011

Lateef Syed, doctoral student in chemistry, Hyderabad, India, is developing the biosensor with Jun Li, associate professor of chemistry. Their research focuses on E. coli, but Syed said the same technology could also detect other kinds of pathogens, such as salmonella and viruses.

"Kansas is a leading state in meat production and the poultry industry," he said. "Any outbreak of pathogens in these industries causes huge financial losses and a lot of health risks. We want to prevent these outbreaks by detecting pathogens at an early stage."

Syed's recent research poster, "Dielectrophoretic Capture of E. coli at Nanoelectrode Arrays," was named a winner at the recent Capitol Graduate Research Summit in Topeka. An article on this work has been accepted for publication in the scientific journal Electrophoresis.

For more than three and a half years, Syed's research has focused on developing nanotechnology-based biosensors for pathogen detection and cancer biomarker detection. He began the research as a doctoral student under the direction of Li, who has researched nanotechnology for 15 years.
"Nanotechnology is a very exciting area," Li said. "It really provides an opportunity to solve problems for health care and food safety. It can also be helpful for the environment and energy issues."

The project is a continuation of work that Li performed at the NASA Ames Research Center in California, where he spent seven years developing nanotechnology. While working in California, Li came up with the idea of developing a small chip to capture and detect pathogens.

When Li arrived at K-State in 2007 he continued the biosensor research with Syed. Together they are working on developing biosensors for cancer diagnosis and pathogen detection. To develop these biosensors, the team uses carbon nanofibers, or CNFs, because they can form an array of tiny electrodes that is even smaller than bacteria and viruses. When these microbial particles are captured at the electrode surface, an electric signal can be detected.

"A goal is to integrate this technology into a hand-held electronic device for pathogen detection so that we can use this device for in-line monitoring of water quality or food quality at industrial processing sites," Syed said. "We have some preliminary results that indicate this technology is feasible, and I'm quite happy about that."

The project is supported by a Canadian-based company called Early Warning Inc., which provided the K-State research team with $240,000 for two years as part of the developmental work. Recently, the project was also supported by the U.S. Department of Homeland Security Center of Excellence for Emerging and Zoonotic Animal Diseases, or CEEZAD, at K-State.

"We're still working with the company and trying to eventually deliver this as a product to feed the market for water quality monitoring," Li said. "You don't want people to drink contaminated water and get sick before you can do something. This research can be very helpful in the future as it can be applied in the very early stages before an outbreak spreads.

"Nanotechnology is a diverse field, and includes such biosensor devices that we can develop in this lab at the university," he said. "As long as we look for those opportunities, we can create something that is useful for Kansas and for people living here."

####

For more information, please click here

Contacts:
Jun Li
785-532-0955


Lateef Syed

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - Lateef Syed, Kansas State University doctoral student in chemistry, and Jun Li, associate professor of chemistry, are developing a nanotechnology-based biosensor that may allow early detection of both cancer cells and pathogens, leading to increased food safety and reduced health risks.

Related News Press

News and information

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Videos/Movies

Caught on camera: The first glimpse of powerful nanoparticles July 17th, 2015

A most singular nano-imaging technique: Berkeley Lab's SINGLE provides images of individual nanoparticles in solution July 16th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Sensors

American Chemical Society expands reach to include rapidly emerging area of sensor science July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Iranian Scientists Create Best Conditions for Synthesis of Gold Nanolayers July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Discoveries

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Announcements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Tools

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Food/Agriculture/Supplements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

QuantumSphere Completes State-of-the-Art Nanocatalyst Production Facility: Now Positioned to Capitalize on Commercial Validation and JDA with Casale, SA July 25th, 2015

3D-printed 'smart cap' uses electronics to sense spoiled food July 20th, 2015

Environmentally friendly lignin nanoparticle 'greens' silver nanobullet to battle bacteria July 13th, 2015

Environment

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Iranian Scientists Use Gas Sensor to Detect Hydrogen July 14th, 2015

Water

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Nanosorbents Reduce Amount of Heavy Metals in Petrochemical Wastewater July 23rd, 2015

Global Nano-water Machine Industry 2015 Market Research Report July 23rd, 2015

Can graphene make the world’s water clean? July 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project