Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Chemists' Biosensor May Improve Food, Water Safety and Cancer Detection

Abstract:
A nanotechnology-based biosensor being developed by Kansas State University researchers may allow early detection of both cancer cells and pathogens, leading to increased food safety and reduced health risks.

Chemists' Biosensor May Improve Food, Water Safety and Cancer Detection

Manhattan, KS | Posted on March 30th, 2011

Lateef Syed, doctoral student in chemistry, Hyderabad, India, is developing the biosensor with Jun Li, associate professor of chemistry. Their research focuses on E. coli, but Syed said the same technology could also detect other kinds of pathogens, such as salmonella and viruses.

"Kansas is a leading state in meat production and the poultry industry," he said. "Any outbreak of pathogens in these industries causes huge financial losses and a lot of health risks. We want to prevent these outbreaks by detecting pathogens at an early stage."

Syed's recent research poster, "Dielectrophoretic Capture of E. coli at Nanoelectrode Arrays," was named a winner at the recent Capitol Graduate Research Summit in Topeka. An article on this work has been accepted for publication in the scientific journal Electrophoresis.

For more than three and a half years, Syed's research has focused on developing nanotechnology-based biosensors for pathogen detection and cancer biomarker detection. He began the research as a doctoral student under the direction of Li, who has researched nanotechnology for 15 years.
"Nanotechnology is a very exciting area," Li said. "It really provides an opportunity to solve problems for health care and food safety. It can also be helpful for the environment and energy issues."

The project is a continuation of work that Li performed at the NASA Ames Research Center in California, where he spent seven years developing nanotechnology. While working in California, Li came up with the idea of developing a small chip to capture and detect pathogens.

When Li arrived at K-State in 2007 he continued the biosensor research with Syed. Together they are working on developing biosensors for cancer diagnosis and pathogen detection. To develop these biosensors, the team uses carbon nanofibers, or CNFs, because they can form an array of tiny electrodes that is even smaller than bacteria and viruses. When these microbial particles are captured at the electrode surface, an electric signal can be detected.

"A goal is to integrate this technology into a hand-held electronic device for pathogen detection so that we can use this device for in-line monitoring of water quality or food quality at industrial processing sites," Syed said. "We have some preliminary results that indicate this technology is feasible, and I'm quite happy about that."

The project is supported by a Canadian-based company called Early Warning Inc., which provided the K-State research team with $240,000 for two years as part of the developmental work. Recently, the project was also supported by the U.S. Department of Homeland Security Center of Excellence for Emerging and Zoonotic Animal Diseases, or CEEZAD, at K-State.

"We're still working with the company and trying to eventually deliver this as a product to feed the market for water quality monitoring," Li said. "You don't want people to drink contaminated water and get sick before you can do something. This research can be very helpful in the future as it can be applied in the very early stages before an outbreak spreads.

"Nanotechnology is a diverse field, and includes such biosensor devices that we can develop in this lab at the university," he said. "As long as we look for those opportunities, we can create something that is useful for Kansas and for people living here."

####

For more information, please click here

Contacts:
Jun Li
785-532-0955


Lateef Syed

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - Lateef Syed, Kansas State University doctoral student in chemistry, and Jun Li, associate professor of chemistry, are developing a nanotechnology-based biosensor that may allow early detection of both cancer cells and pathogens, leading to increased food safety and reduced health risks.

Related News Press

News and information

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Videos/Movies

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

New material to revolutionize water proofing September 12th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

3-D graphene has promise for bio applications: Rice University-led team welds nanoscale sheets to form tough, porous material September 7th, 2016

Sensors

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Announcements

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tools

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Food/Agriculture/Supplements

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Environment

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Mathematical nanotoxicoproteomics: Quantitative characterization of effects of multi-walled carbon nanotubes: This research article by Dr. Subhash Basak et al. will be published in Current Computer-Aided Drug Design, Volume 12, 2016 September 2nd, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Water

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

University of Akron researchers find thin layers of water can become ice-like at room temperature: Results could lead to an assortment of anti-friction solutions August 30th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic