Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Blood simple circuitry for cyborgs: Simplifying cyborg circuitry using human blood

Abstract:
Could electronic components made from human blood be the key to creating cyborg interfaces? Circuitry that links human tissues and nerve cells directly to an electronic device, such as a robotic limb or artificial eye might one day be possible thanks to the development of biological components.

Blood simple circuitry for cyborgs: Simplifying cyborg circuitry using human blood

India | Posted on March 30th, 2011

Writing in the International Journal of Medical Engineering and Informatics, a team in India describes how a "memristor" can be made using human blood. Memristors were a theoretical electronic component first suggested in 1971 by Berkeley electrical engineer Leon Chua and finally developed in the laboratory by scientists at Hewlett Packard using titanium dioxide in 2008. A memristor is a passive device, like a resistor, with two terminals but rather than having a fixed electrical resistance, its ability to carry a current changes depending on the voltage applied previously; it retains a memory of the current, in other words.

There are countless patents linking the development of memristors to applications in programmable logic circuits, as components of future transistors, in signal processing and in neural networks. S.P. Kosta of the Education Campus Changa in Gujarat and colleagues have now explored the possibility of creating a liquid memristor from human blood. In parallel work they are investigating diodes and capacitors composed of liquid human tissues.

They constructed the laboratory-based biological memristor using a 10 ml test tube filled with human blood held at 37 Celsius into which two electrodes are inserted; appropriate measuring instrumentation was attached. The experimental memristor shows that resistance varies with applied voltage polarity and magnitude and this memory effect is sustained for at least five minutes in the device.

Having demonstrated memristor behavior in blood, the next step was to test that the same behavior would be observed in a device through which blood is flowing. This step was also successful. The next stage will be to develop a micro-channel version of the flow memristor device and to integrate several to carry out particular logic functions. This research is still a long way from an electronic to biological interface, but bodes well for the development of such devices in the future.

"Human blood liquid memristor" in Int. J. Medical Engineering and Informatics, 2011, 3, 16-29

####

For more information, please click here

Contacts:
S P Kosta

91-942-641-9506

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

Brain-Computer Interfaces

A firefly's flash inspires new nanolaser light July 18th, 2017

Gold & Graphene Make Brain Probes More Sensitive Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/05/tech/graphene-gold-brain-probe/ May 3rd, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Possible Futures

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Discoveries

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

Announcements

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Harnessing light to drive chemical reactions July 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project